
Tianhua He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2837703/publications.pdf Version: 2024-02-01

Τιλνημιλ Ης

#	Article	IF	CITATIONS
1	Dealing with â€~the spectre of "spurious" correlations': hazards in comparing ratios and other derived variables with a randomization test to determine if a biological interpretation is justified. Oikos, 2022, 2022, .	2.7	6
2	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 2022, 6, 36-50.	7.8	89
3	Swiftly Evolving CRISPR Genome Editing: A Revolution in Genetic Engineering for Developing Stress-Resilient Crops. Current Chinese Science, 2022, 2, 382-399.	0.5	2
4	Genetic solutions through breeding counteract climate change and secure barley production in Australia. , 2022, 1, 100001.		4
5	Ancient Rhamnaceae flowers impute an origin for flowering plants exceeding 250-million-years ago. IScience, 2022, 25, 104642.	4.1	10
6	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
7	Genome-wide association studies reveal QTL hotspots for grain brightness and black point traits in barley. Crop Journal, 2021, 9, 154-167.	5.2	10
8	Wholeâ€genome assembly and resequencing reveal genomic imprint and key genes of rapid domestication in narrowâ€leafed lupin. Plant Journal, 2021, 105, 1192-1210.	5.7	12
9	Different sets of traits explain abundance and distribution patterns of European plants at different spatial scales. Journal of Vegetation Science, 2021, 32, e13016.	2.2	15
10	Genomic structural equation modelling provides a whole-system approach for the future crop breeding. Theoretical and Applied Genetics, 2021, 134, 2875-2889.	3.6	3
11	Fire-mediated germination syndromes in Leucadendron (Proteaceae) and their functional correlates. Oecologia, 2021, 196, 589-604.	2.0	9
12	The Genetic Control of Stomatal Development in Barley: New Solutions for Enhanced Water-Use Efficiency in Drought-Prone Environments. Agronomy, 2021, 11, 1670.	3.0	4
13	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
14	Soil properties and agricultural practices shape microbial communities in flooded and rainfed croplands. Applied Soil Ecology, 2020, 147, 103449.	4.3	28
15	Fire as a Selective Agent for both Serotiny and Nonserotiny Over Space and Time. Critical Reviews in Plant Sciences, 2020, 39, 140-172.	5.7	59
16	Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change. Crop Journal, 2020, 8, 688-700.	5.2	43
17	Environmental drivers and genomic architecture of trait differentiation in fireâ€∎dapted <i>Banksia attenuata</i> ecotypes. Journal of Integrative Plant Biology, 2019, 61, 417-432.	8.5	10
18	Fire as a key driver of Earth's biodiversity. Biological Reviews, 2019, 94, 1983-2010.	10.4	263

Τιανήμα Ηε

#	Article	IF	CITATIONS
19	Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. Journal of Experimental Botany, 2019, 70, 5603-5616.	4.8	49
20	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185
21	Organic tracers from biomass burning in snow from the coast to the ice sheet summit of East Antarctica. Atmospheric Environment, 2019, 201, 231-241.	4.1	19
22	Reply to â€~No evidence for different metabolism in domestic mammals'. Nature Ecology and Evolution, 2019, 3, 323-323.	7.8	0
23	Fire as a pre-emptive evolutionary trigger among seed plants. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 36, 13-23.	2.7	17
24	Evolutionary history of fireâ€stimulated resprouting, flowering, seed release and germination. Biological Reviews, 2019, 94, 903-928.	10.4	81
25	Fire as a Potent Mutagenic Agent Among Plants. Critical Reviews in Plant Sciences, 2018, 37, 1-14.	5.7	24
26	On the origin and genetic variability of the two invasive biotypes of Chromolaena odorata. Biological Invasions, 2018, 20, 2033-2046.	2.4	12
27	Does smoke water enhance seedling fitness of serotinous species in fire-prone southwestern Western Australia?. South African Journal of Botany, 2018, 115, 237-243.	2.5	5
28	Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 2018, 13, 033003.	5.2	198
29	Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nature Ecology and Evolution, 2018, 2, 1808-1817.	7.8	59
30	Resprouters, assisted by somatic mutations, are as genetically diverse as nonsprouters in the world's fire-prone ecosystems. Acta Oecologica, 2018, 92, 1-6.	1.1	2
31	Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth's flora. National Science Review, 2018, 5, 237-254.	9.5	58
32	Combustion temperatures and nutrient transfers when grasstrees burn. Forest Ecology and Management, 2017, 399, 179-187.	3.2	13
33	Characterization of Leaf Transcriptome in Banksia hookeriana. Genomics, Proteomics and Bioinformatics, 2017, 15, 49-56.	6.9	14
34	Fire-Proneness as a Prerequisite for the Evolution of Fire-Adapted Traits. Trends in Plant Science, 2017, 22, 278-288.	8.8	73
35	African geoxyles evolved in response to fire; frost came later. Evolutionary Ecology, 2017, 31, 603-617.	1.2	44
36	When did a Mediterranean-type climate originate in southwestern Australia?. Global and Planetary Change, 2017, 156, 46-58.	3.5	20

#	Article	IF	CITATIONS
37	Small-seeded Hakea species tolerate cotyledon loss better than large-seeded congeners. Scientific Reports, 2017, 7, 41520.	3.3	4
38	Pre-Gondwanan-breakup origin of <i>Beauprea</i> (Proteaceae) explains its historical presence in New Caledonia and New Zealand. Science Advances, 2016, 2, e1501648.	10.3	24
39	Phenotypic variation and differentiated gene expression of Australian plants in response to declining rainfall. Royal Society Open Science, 2016, 3, 160637.	2.4	3
40	Bird pollinators, seed storage and cockatoo granivores explain large woody fruits as best seed defense in Hakea. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21, 55-77.	2.7	12
41	Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest. Ecology and Evolution, 2016, 6, 8719-8726.	1.9	21
42	A Cretaceous origin for fire adaptations in the Cape flora. Scientific Reports, 2016, 6, 34880.	3.3	29
43	Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest. Scientific Reports, 2016, 6, 20652.	3.3	22
44	Evolutionary potential and adaptation of Banksia attenuata (Proteaceae) to climate and fire regime in southwestern Australia, a global biodiversity hotspot. Scientific Reports, 2016, 6, 26315.	3.3	8
45	A 350â€millionâ€year legacy of fire adaptation amongÂconifers. Journal of Ecology, 2016, 104, 352-363.	4.0	52
46	Fitness benefits of serotiny in fire- and drought-prone environments. Plant Ecology, 2016, 217, 773-779.	1.6	52
47	Hakea, the world's most sclerophyllous genus, arose in southwestern Australian heathland and diversified throughout Australia over the past 12 million years. Australian Journal of Botany, 2016, 64, 77.	0.6	25
48	<scp>LMA</scp> , density and thickness: recognizing different leaf shapes and correcting for their nonlaminarity. New Phytologist, 2015, 207, 942-947.	7.3	22
49	High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae). Scientific Reports, 2015, 5, 17132.	3.3	1
50	Seed Size, Fecundity and Postfire Regeneration Strategy Are Interdependent in Hakea. PLoS ONE, 2015, 10, e0129027.	2.5	11
51	Genetic and ecological consequences of interactions between three banksias in mediterraneanâ€ŧype shrubland. Journal of Vegetation Science, 2014, 25, 617-626.	2.2	2
52	Ecological divergence and evolutionary transition of resprouting types in B anksia attenuata. Ecology and Evolution, 2014, 4, 3162-3174.	1.9	6
53	Floral divergence in closely related Leucospermum tottum (Proteaceae) varieties pollinated by birds and long-proboscid flies. Evolutionary Ecology, 2014, 28, 849-868.	1.2	10
54	Invasion genetics of Chromolaena odorata (Asteraceae): extremely low diversity across Asia. Biological Invasions, 2014, 16, 2351-2366.	2.4	30

#	Article	IF	CITATIONS
55	Structural equation modelling analysis of evolutionary and ecological patterns in Australian <i>Banksia</i> . Population Ecology, 2013, 55, 461-467.	1.2	6
56	Adaptive responses to directional trait selection in the Miocene enabled Cape proteas to colonize the savanna grasslands. Evolutionary Ecology, 2013, 27, 1099-1115.	1.2	42
57	Fireâ€adapted traits of <i>Pinus</i> arose in the fiery Cretaceous. New Phytologist, 2012, 194, 751-759.	7.3	225
58	Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous. BMC Evolutionary Biology, 2012, 12, 223.	3.2	59
59	Low Rate of Between-Population Seed Dispersal Restricts Genetic Connectivity and Metapopulation Dynamics in a Clonal Shrub. PLoS ONE, 2012, 7, e50974.	2.5	27
60	Traditional home-garden conserving genetic diversity: a case study of Acacia pennata in southwest China. Conservation Genetics, 2012, 13, 891-898.	1.5	9
61	Phylogenetic and phenotypic structure among <i>Banksia</i> communities in southâ€western Australia. Journal of Biogeography, 2012, 39, 397-407.	3.0	16
62	Migration potential as a new predictor of long-distance dispersal rate for plants. Nature Precedings, 2011, , .	0.1	0
63	Banksia born to burn. New Phytologist, 2011, 191, 184-196.	7.3	158
64	Fitness and evolution of resprouters in relation to fire. Plant Ecology, 2011, 212, 1945-1957.	1.6	84
65	Species versus genotypic diversity of a nitrogenâ€fixing plant functional group in a metacommunity. Population Ecology, 2010, 52, 337-345.	1.2	29
66	Isolation and characterization of polymorphic microsatellite DNA markers for Banksia candolleana (Proteaceae). Conservation Genetics Resources, 2010, 2, 345-347.	0.8	5
67	High microsatellite genetic diversity fails to predict greater population resistance to extreme drought. Conservation Genetics, 2010, 11, 1445-1451.	1.5	13
68	Contrasting coarse and fine scale genetic structure among isolated relic populations of Kmeria septentrionalis. Genetica, 2010, 138, 939-944.	1.1	5
69	Genetic connectivity and inter-population seed dispersal of Banksia hookeriana at the landscape scale. Annals of Botany, 2010, 106, 457-466.	2.9	20
70	Longâ€distance dispersal of seeds in the fireâ€ŧolerant shrub <i>Banksia attenuata</i> . Ecography, 2009, 32, 571-580.	4.5	34
71	Contrasting impacts of pollen and seed dispersal on spatial genetic structure in the bird-pollinated Banksia hookeriana. Heredity, 2009, 102, 274-285.	2.6	65
72	Ants cannot account for interpopulation dispersal of the arillate pea <i>Daviesia triflora</i> . New Phytologist, 2009, 181, 725-733.	7.3	25

#	Article	IF	CITATIONS
73	Population Size Effects on Progeny Performance in Banksia ilicifolia R. Br. (Proteaceae). HAYATI Journal of Biosciences, 2009, 16, 43-48.	0.4	2
74	Distribution of myrmecochorous species over the landscape and their potential longâ€distance dispersal by emus and kangaroos. Diversity and Distributions, 2008, 14, 11-17.	4.1	37
75	Patchy plant distribution promotes invasion by exotics in south-western Australia. Ecological Management and Restoration, 2008, 9, 77-82.	1.5	1
76	Covariation between intraspecific genetic diversity and species diversity within a plant functional group. Journal of Ecology, 2008, 96, 956-961.	4.0	51
77	Polymorphic microsatellite DNA markers for <i>Daviesia triflora</i> (Papilionaceae). Molecular Ecology Resources, 2008, 8, 1475-1476.	4.8	2
78	Polymorphic microsatellite DNA markers for <i>Banksia hookeriana</i> (Proteaceae). Molecular Ecology Resources, 2008, 8, 1515-1517.	4.8	7
79	Polymorphic microsatellite DNA markers for Banksia attenuata (Proteaceae). Molecular Ecology Notes, 2007, 7, 1329-1331.	1.7	12
80	Rapid genetic identification of local provenance seed collection zones for ecological restoration and biodiversity conservation. Journal for Nature Conservation, 2006, 14, 190-199.	1.8	43
81	Late Quaternary climate change and spatial genetic structure in the shrub Banksia hookeriana. Molecular Ecology, 2006, 15, 1125-1137.	3.9	13
82	Genetic spatial clustering: significant implications for conservation of wild soybean (GlycineÂsoja:) Tj ETQq0 0 0 r	gBT /Over 1.1	locုန္ 10 Tf 50
83	Temporal patterns of genetic variation across a 9-year-old aerial seed bank of the shrub Banksia hookeriana (Proteaceae). Molecular Ecology, 2005, 14, 4169-4179.	3.9	48
84	Genetic Evaluation of the Efficacy of In Situ and Ex Situ Conservation of Parashorea chinensis (Dipterocarpaceae) in Southwestern China. Biochemical Genetics, 2005, 43, 387-406.	1.7	19
85	Genetic Evaluation of in situ Conserved and Reintroduced Populations of Wild Rice (Oryza rufipogon:) Tj ETQq1 J	0.784314 1.7	4 rgBT /Overl
86	Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Molecular Ecology, 2004, 13, 1099-1109.	3.9	136
87	Generic relationships of <i>Parashorea chinensis</i> Wang Hsie (Dipterocarpaceae) based on cpDNA sequences. Taxon, 2004, 53, 461-466.	0.7	6
88	Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. Journal of Evolutionary Biology, 2003, 16, 551-557.	1.7	128
89	Fine scale genetic structure in a wild soybean (Glycine soja) population and the implications for conservation. New Phytologist, 2003, 159, 513-519.	7.3	48
90	Genetic Variation and Biogeographic History in the Restricted Southwestern Australian Shrub, Banksia Hookeriana. Physical Geography, 2003, 24, 358-377.	1.4	7

#	Article	IF	CITATIONS
91	Ex situ genetic conservation of endangered Vatica guangxiensis (Dipterocarpaceae) in China. Biological Conservation, 2002, 106, 151-156.	4.1	65
92	Paternity analysis in Ophiopogon xylorrhizus Wang et Tai (Liliaceae s.l.): selfing assures reproductive success. Journal of Evolutionary Biology, 2002, 15, 487-494.	1.7	10
93	Genetic structure and heterozygosity variation between generations of Ophiopogon xylorrhizus (Liliaceae s.l.), an endemic species in Yunnan, southwest China. Biochemical Genetics, 2001, 39, 93-98.	1.7	2
94	Reproductive biology of Ophiopogon xylorrhizus (Liliaceae s.l.): an endangered endemic of Yunnan, Southwest China. Australian Journal of Botany, 2000, 48, 101.	0.6	10
95	Spatial Autocorrelation of Genetic Variation in Three Stands of Ophiopogon xylorrhizus(Liliaceaes.l.) Tj ETQq1 1 C).784314 ı 2.9	g₽Ţ /Overlo
96	Genetic diversity of widespread Ophiopogon intermedius (Liliaceae s.l.): a comparison with endangered O. xylorrhizus. Biological Conservation, 2000, 96, 253-257.	4.1	13
97	Mating System of Ophiopogon xylorrhizus (Liliaceae), an Endangered Species in Southwest China. International Journal of Plant Sciences, 1998, 159, 440-445.	1.3	8
98	The third dimension: How fire-related research can advance ecology and evolutionary biology. Ideas in Ecology and Evolution, 0, 13, .	0.1	1