Andrey A Karasik

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2837651/andrey-a-karasik-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,634 192 31 21 h-index g-index citations papers 1,845 2.2 204 4.37 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
192	Synthesis and Crystal and Molecular Structures of 1,3-Di-p-tolyl-5-(5'-allyl 2'-ethoxybenzyl)-1,3,5-diazaphosphacyclohexane Complexes with Ni(II) and Pt(II) Salts. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2022 , 48, 189-194	1.6	
191	Proton spongeleffect and apoptotic cell death mechanism of Ag -Re6 nanocrystallites derived from the assembly of [{Re6S8}(OH)6(H2O)]4 with Ag+ ions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022, 129312	5.1	1
190	Assembly of Heterometallic AuICuI Cores on the Scaffold of NPPN-Bridging Cyclic Bisphosphine. <i>Inorganic Chemistry</i> , 2021 , 60, 5402-5411	5.1	3
189	Platinum(II) Complexes with 10-(Aryl)phenoxarsines: Synthesis, Cis/Trans Isomerization, and Luminescence. <i>Inorganic Chemistry</i> , 2021 , 60, 6804-6812	5.1	1
188	Luminescent Cul-cubane clusters based on -methyl-5,10-dihydrophenarsazines. <i>Dalton Transactions</i> , 2021 , 50, 13421-13429	4.3	2
187	Binuclear charged copper(I) complex as a multimode luminescence thermal sensor. <i>Sensors and Actuators A: Physical</i> , 2021 , 325, 112722	3.9	5
186	Structure impact on photodynamic therapy and cellular contrasting functions of colloids constructed from dimeric Au(I) complex and hexamolybdenum clusters. <i>Materials Science and Engineering C</i> , 2021 , 128, 112355	8.3	2
185	Electrochemical and catalytic properties of nickel(II) complexes with bis(imino)acenaphthene and diazadiphosphacyclooctane ligands. <i>Mendeleev Communications</i> , 2020 , 30, 302-304	1.9	3
184	Rearrangement of two 8-membered 1,5-diaza-3,7-diphosphacyclooctane rings into 16-membered P4N4 ligand on the gold(i) template. <i>Mendeleev Communications</i> , 2020 , 30, 40-42	1.9	5
183	Water dispersible supramolecular assemblies built from luminescent hexarhenium clusters and silver(I) complex with pyridine-2-ylphospholane for sensorics. <i>Journal of Molecular Liquids</i> , 2020 , 305, 112853	6	2
182	Study of the structures and photophysical properties of 1,3-diaza-5-phosphacyclohexanes using density functional theory and optical spectroscopy. <i>Russian Chemical Bulletin</i> , 2020 , 69, 449-457	1.7	O
181	Synthesis of New 1,3,5-Azadiphosphorinanes Based on Aliphatic Amines. <i>Russian Journal of General Chemistry</i> , 2020 , 90, 224-228	0.7	1
180	Stereoselective synthesis of the RPSPSPRP isomer of 22-membered P4N2 macrocycles. <i>Mendeleev Communications</i> , 2020 , 30, 697-699	1.9	1
179	STRUCTURAL FEATURES OF BINUCLEAR COPPER(I) COMPLEXES WITH 10-M-(ARYL)PHENOXARSINES. <i>Journal of Structural Chemistry</i> , 2020 , 61, 1931-1937	0.9	0
178	Cul-cubane clusters based on 10-(aryl)phenoxarsines and their luminescence. <i>Dalton Transactions</i> , 2020 , 49, 482-491	4.3	9
177	Insight into the influence of terminal ligands on magnetic exchange coupling in a series of dimeric copper(II) acetate adducts. <i>International Journal of Quantum Chemistry</i> , 2020 , 120, e26145	2.1	1
176	Binuclear Gold(I) Phosphine Alkynyl Complexes Templated on a Flexible Cyclic Phosphine Ligand: Synthesis and Some Features of Solid-State Luminescence. <i>Inorganic Chemistry</i> , 2020 , 59, 244-253	5.1	9

175	New Gold(I) Complexes with 1,5-Diaza-3,7-Diphosphacyclooctanes: Synthesis and Structures. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2020 , 46, 477-484	1.6	1
174	Impact of oppositely charged shell and cores on interaction of core-shell colloids with differently charged proteins as a route for tuning of the colloids cytotoxicity. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 196, 111306	6	2
173	Triple-bridged helical binuclear copper(i) complexes: Head-to-head and head-to-tail isomerism and the solid-state luminescence. <i>Dalton Transactions</i> , 2020 , 49, 11997-12008	4.3	7
172	Dynamic Covalent Chemistry Approach toward 18-Membered PN Macrocycles and Their Nickel(II) Complexes. <i>Journal of Organic Chemistry</i> , 2020 , 85, 14610-14618	4.2	3
171	Synthesis and Structure of Iron (II) Complexes of Functionalized 1,5-Diaza-3,7-Diphosphacyclooctanes. <i>Molecules</i> , 2020 , 25,	4.8	3
170	Copper(II) Complexes with N,O-Hybrid Ligands based on Pyridyl-Containing Phospholane Oxides. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2020 , 46, 600-607	1.6	1
169	Pt- and Pd-Complexes with Acyclic and Heterocyclic P-Hydroxyaryl-Substituted N-Phosphanylmethyl Amino Acids RP(CH2NHR')2 and (RPCH2NR'CH2)2 (Evaluation of (P^O)M Chelate Formation. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 3682-3691	2.3	1
168	Reversible temperature-responsible emission in solutions within 293B33 K produced by dissociative behavior of multinuclear Cu(I) complexes with aminomethylphosphines. <i>Inorganica Chimica Acta</i> , 2019 , 498, 119125	2.7	2
167	Fresh Look on the Nature of Dual-Band Emission of Octahedral Copper-Iodide Clusters Promising Ratiometric Luminescent Thermometers. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 25863-25870	3.8	18
166	Intriguing Near-Infrared Solid-State Luminescence of Binuclear Silver(I) Complexes Based on Pyridylphospholane Scaffolds. <i>Inorganic Chemistry</i> , 2019 , 58, 7698-7704	5.1	15
165	Self-Assembly of Chiral 1,8-Diaza-3,6,10,13-tetraphosphacyclotetradecanes via Dynamic Transformation of 7- and 14-Membered Aminomethylphosphines. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 3053-3060	2.3	5
164	Application of density functional theory and optical spectroscopy for the prediction of the photophysical properties of pyridylphospholanes . <i>Russian Chemical Bulletin</i> , 2019 , 68, 254-261	1.7	3
163	1,5-Diaza-3,7-Diphosphacyclooctane Bis-Ligand Nickel(II) Complexes as Oxygen Reduction Catalysts for Proton-Exchange Membrane Fuel Cells. <i>Energy Technology</i> , 2019 , 7, 1900020	3.5	O
162	Synthesis of palladium (II) complexes of N-p-iodophenyl substituted 1,5-diaza-3,7-diphosphacyclooctanes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2019 , 194, 515-516	1	O
161	Synthesis and coordination properties of phospholanopyridinium hydrochlorides. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2019 , 194, 502-505	1	
160	Luminescent complexes on a scaffold of P2N2-ligands: design of materials for analytical and biomedical applications. <i>Pure and Applied Chemistry</i> , 2019 , 91, 839-849	2.1	9
159	Luminescent complexes of 1,5-diaza-3,7-diphosphacyclooctanes with coinage metals. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2019 , 194, 410-414	1	1
158	Complexes of Phosphorus-containing Cyclophanes and Cryptands with Metals, Anions, and Organic Substrates. <i>Russian Journal of Organic Chemistry</i> , 2019 , 55, 1642-1660	0.7	1

157	Intracyclic iron(II) complexes based on 16-membered P4N2 corands. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2019 , 194, 438-439	1	О
156	Bis-chelate nickel(II) complex with a 1,5-diaza-3,7-diphosphacyclooctane ligand: Solid-state structure and redox properties. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2019 , 194, 337	7-3 ¹ 38	
155	Bis-chelate iron(II) complex with a 1,5-diaza-3,7-diphosphacyclooctane ligand: X-ray structure and redox properties. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2019 , 194, 353-354	1	
154	The Assembly of Unique Hexanuclear Copper(I) Complexes with Effective White Luminescence. <i>Inorganic Chemistry</i> , 2019 , 58, 1048-1057	5.1	24
153	Novel iron (II) complexes of 1,5-diaza-3,7-diphosphacyclooctanes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2019 , 194, 558-559	1	
152	Synthesis of Cu(I) complexes of 10-(m-(R)-phenyl)phenoxarsines. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2019 , 194, 480-481	1	2
151	Polyelectrolyte-coated ultra-small nanoparticles with Tb(III)-centered luminescence as cell labels with unusual charge effect on their cell internalization. <i>Materials Science and Engineering C</i> , 2019 , 95, 166-173	8.3	7
150	Synthesis of Au(I) complex-based aqueous colloids for sensing of biothiols. <i>Inorganica Chimica Acta</i> , 2019 , 485, 26-32	2.7	6
149	Novel representatives of 16-membered aminomethylphosphines with alkyl substituents at nitrogen and their gold(I) complexes. <i>Russian Chemical Bulletin</i> , 2018 , 67, 328-335	1.7	5
148	Electrooxidation of 1,3वi(para-tolyl)-5-para-toluidinomethyl-1,3,5-diazaphosphorinane on soluble metallic anodes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2018 , 193, 50-52	1	1
147	Unpredicted concurrency between P,P-chelate and P,P-bridge coordination modes of 1,5-diR-3,7-di(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane ligands in copper(I) complexes. <i>Polyhedron</i> , 2018 , 139, 1-6	2.7	7
146	The first representatives of tetranuclear gold(i) complexes of P,N-containing cyclophanes. <i>Dalton Transactions</i> , 2018 , 47, 7715-7720	4.3	5
145	Organometallic Polymer Electrolyte Membrane Fuel Cell Bis-Ligand Nickel(Ii) Complex of 1,5-Di-P-Tolyl-3,7-Dipyridine-1,5,3,7-Diazadiphosphacyclo-Octane Catalyst. <i>Energy Technology</i> , 2018 , 6, 1088-1095	3.5	9
144	Novel water soluble cationic Au(I) complexes with cyclic PNNP ligand as building blocks for heterometallic supramolecular assemblies with anionic hexarhenium cluster units. <i>Journal of Luminescence</i> , 2018 , 196, 485-491	3.8	12
143	Chiral [16]-ane PN macrocycles: stereoselective synthesis and unexpected intermolecular exchange of endocyclic fragments. <i>Dalton Transactions</i> , 2018 , 47, 16977-16984	4.3	7
142	Synthesis and Structure of N-Pyridyl-Containing Cyclic Aminomethylphosphines. <i>Russian Journal of General Chemistry</i> , 2018 , 88, 2257-2262	0.7	
141	Synthesis of a 16-Membered P4N2 Macrocycle with Pyridyl-Substituted Phosphorus Atoms. <i>Russian Journal of General Chemistry</i> , 2018 , 88, 2449-2452	0.7	1
140	Synthesis of water-soluble bis-N,O-chelate nickel(II) complexes based on new ligands P-pyridyl-containing phospholane oxides. <i>Russian Chemical Bulletin</i> , 2018 , 67, 1206-1211	1.7	4

(2016-2018)

139	Organoelement chemistry: promising growth areas and challenges. <i>Russian Chemical Reviews</i> , 2018 , 87, 393-507	6.8	111
138	Macrocyclic tetrakis-phosphines and their copper(I) complexes. <i>Pure and Applied Chemistry</i> , 2017 , 89, 331-339	2.1	9
137	Pyridyl Containing 1,5-Diaza-3,7-diphosphacyclooctanes as Bridging Ligands for Dinuclear Copper(I) Complexes. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2017 , 643, 895-902	1.3	11
136	Cyclic aminomethylphosphines as ligands. Rational design and unpredicted findings. <i>Pure and Applied Chemistry</i> , 2017 , 89, 293-309	2.1	14
135	Supporting effect of polyethylenimine on hexarhenium hydroxo cluster complex for cellular imaging applications. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2017 , 340, 46-52	4.7	24
134	In situ electrochemical synthesis of Ni(I) complexes with aminomethylphosphines as intermediates for hydrogen evolution. <i>Electrochimica Acta</i> , 2017 , 225, 467-472	6.7	20
133	Covalent self-assembly of the specific RSSR isomer of 14-membered tetrakisphosphine. <i>Dalton Transactions</i> , 2017 , 46, 12417-12420	4.3	7
132	Synthetic organometallic models of iron-containing hydrogenases as molecular electrocatalysts for hydrogen evolution or oxidation. <i>Russian Chemical Reviews</i> , 2017 , 86, 298-317	6.8	10
131	A Series of Cu2I2 Complexes of 10-(Aryl)phenoxarsines: Synthesis and Structural Diversity. <i>ChemistrySelect</i> , 2017 , 2, 11755-11761	1.8	7
130	The formation of secondary arylphosphines in the reaction of organonickel sigma-complex [NiBr(Mes)(bpy)], where Mes = 2,4,6-trimethylphenyl, bpy = 2,2?-bipyridine, with phenylphosphine. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1475-1477	1	12
129	A stimuli-responsive Au(I) complex based on an aminomethylphosphine template: synthesis, crystalline phases and luminescence properties. <i>CrystEngComm</i> , 2016 , 18, 7629-7635	3.3	28
128	EPR-spectroelectrochemistry of nickelörganic complexesömall molecules activators. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1613-1614	1	
127	Macrocyclic tetraphosphine corands and their complexes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1444-1446	1	1
126	New catalysts for PEM fuel cells. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 14	l88 <u>-</u> 149	004
125	New 18-membered tetrakisphosphine macrocycle and its derivatives. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1591-1592	1	4
124	Synthesis of 1-pyridylphospholane-1-oxides and their Ni(II) complexes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1630-1631	1	2
123	Conformational Analysis of P,N-Containing Eight-Membered Heterocycles and Their Pt/Ni Complexes in Solution. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 1068-1084	2.3	10
122	Synthesis of novel pyridyl containing phospholanes and their polynuclear luminescent copper(i) complexes. <i>Dalton Transactions</i> , 2016 , 45, 2250-60	4.3	57

121	First Representatives of AuI Complexes of P,N-Containing Bicyclo[7.7.5]henicosane. <i>Macroheterocycles</i> , 2016 , 9, 46-49	2.2	7
120	Nickel-organic complexes as catalyst in PEM fuel cells. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1654-1655	1	
119	Synthesis of first representatives of 46-membered P,N,O-containing cyclophanes and their transition metal complexes. <i>Russian Chemical Bulletin</i> , 2016 , 65, 1319-1324	1.7	6
118	Metal complexes with aminomethylphosphines: Ni vs. Co in hydrogen evolution. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1604-1605	1	1
117	Luminescent copper(I) and gold(I) complexes of 1,5-diaza-3,7-diphosphacyclooctanes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1518-1519	1	2
116	Novel functionalized 1,5-diaza-3,7-diphosphacyclooctanes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1515-1517	1	2
115	Tetracarbonyltungsten (0) and Enolybdenum (0) complexes of P,N-containing cyclophanes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1581-1582	1	3
114	Structure and dynamics of eight-membered P,N-heterocycles in solution. <i>Russian Journal of General Chemistry</i> , 2016 , 86, 584-589	0.7	
113	Iron or nickel complexes bearing diphosphine and BIAN ligands as electrocatalysts for H2 evolution. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1644-1645	1	4
112	Cyclic aminomethylphosphines as ligands: Balancing between rational design and unpredicted findings. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1413-1415	1	2
111	Direct phosphorylation of pyridine in the presence of Ni(BF4)2bpy and CoCl2bpy metal complexes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1545-1546	1	6
110	Hostquestpinding of a luminescent dinuclear Au(I) complex based on cyclic diphosphine with organic substrates as a reason for luminescence tuneability. <i>New Journal of Chemistry</i> , 2016 , 40, 9853-9	8 6 9	16
109	Novel chiral 14-membered aminomethylphosphines. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1533-1534	1	1
108	10-(Aryl)phenoxarsines as ligands for design of polynuclear Cu(I) complexes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1587-1588	1	2
107	Synthesis and unique reversible splitting of 14-membered cyclic aminomethylphosphines on to 7-membered heterocycles. <i>Dalton Transactions</i> , 2015 , 44, 13565-72	4.3	20
106	Unexpected ligand effect on the catalytic reaction rate acceleration for hydrogen production using biomimetic nickel electrocatalysts with 1,5-diaza-3,7-diphosphacyclooctanes. <i>Journal of Organometallic Chemistry</i> , 2015 , 789-790, 14-21	2.3	26
105	Electrochemically controlled binding of bis-P,P-chelate platinum(II) dication to 3,7-di(2-pyridyl)-1,5-diphenyl-1,5-diaza-3,7-diphosphacyclooctane complex and ferrocyanide ion with tetraviologen calix[4]resorcinol. <i>Russian Chemical Bulletin</i> , 2015 , 64, 291-305	1.7	
104	Influence of the racfheso isomerization of seven-membered cyclic bisphosphines on the predominant formation of chelate complexes. <i>Polyhedron</i> , 2015 , 100, 344-350	2.7	10

(2013-2015)

103	Heterocyclic Phosphines with P-C-X Fragments (X=O, N, P). <i>Advances in Heterocyclic Chemistry</i> , 2015 , 83-130	2.4	19
102	Cyclic Phosphino Amino Pyridines Novel Instrument for Construction of Catalysts and Luminescent Materials. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2015 , 190, 729-732	1	5
101	Binuclear Au(I) And Ag(I) Complexes of Novel 1-(Pyridine-2-Yl)Phospholane. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2015 , 190, 827-830	1	1
100	Cu(I) Complexes of 14-Membered Cyclic Tetraphosphines. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2015 , 190, 824-826	1	2
99	New P,N-Containing Cyclophanes with Exocyclic Pyridyl Containing Substituents on Phosphorus Atoms. <i>Macroheterocycles</i> , 2015 , 8, 402-408	2.2	7
98	New functional cyclic aminomethylphosphine ligands for the construction of catalysts for electrochemical hydrogen transformations. <i>Chemistry - A European Journal</i> , 2014 , 20, 3169-82	4.8	54
97	Alternating stereoselective self-assembly of SSSS/RRRR or RSSR isomers of tetrakisphosphines in the row of 14-, 16-, 18- and 20-membered macrocycles. <i>Dalton Transactions</i> , 2014 , 43, 12784-9	4.3	21
96	Binding of 1,5-bis(p-sulfonatophenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane with tetramethylviologen calix[4]resorcin with a methyl radical in the resorcinol ring. <i>Russian Journal of Electrochemistry</i> , 2014 , 50, 142-153	1.2	9
95	Anodic oxidation of 1,3-di(paratolyl)-5-paratoluidinomethyl-1,3,5-diazaphosphorinane on aluminum. <i>Russian Journal of Electrochemistry</i> , 2014 , 50, 1102-1104	1.2	2
94	Synthesis of New Examples of Corands with 16-Membered P,N-Containing Core Ring. <i>Macroheterocycles</i> , 2014 , 7, 181-188	2.2	16
93	Chelating cyclic aminomethylphosphines and their transition metal complexes as a promising basis of bioinspired mimetic catalysts. <i>Mendeleev Communications</i> , 2013 , 23, 237-248	1.9	32
92	Nickel(II) Complexes of Novel P,N-Heterocycles Based on Pyridylphosphines. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2013 , 188, 59-60	1	3
91	Nickel complexes with cyclic ligands containing P and N atoms as coordination sites: novel biomimetic catalysts for hydrogen oxidation. <i>Russian Chemical Bulletin</i> , 2013 , 62, 1003-1009	1.7	12
90	Electrodriven molecular system based on tetraviologen calix[4]resorcine and dianion 1,5-bis(n-sulfonatophenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane. <i>Electrochimica Acta</i> , 2013 , 111, 466-473	6.7	9
89	Electrochemical switching of monomer ssociate in the system tetraviologen calix[4]resorcinol B,7-di(l-menthyl)-1,5-di(p-sulfonatophenyl)-1,5-diaza-3,7-diphosphacyclooctane. <i>Russian Chemical Bulletin</i> , 2013 , 62, 2158-2170	1.7	5
88	New aminomethylphosphines with cyanophenyl substituents at the nitrogen atoms. <i>Russian Chemical Bulletin</i> , 2013 , 62, 2487-2494	1.7	4
87	New Biomimetic Catalysts for the Electrochemical Processes on the Basis of Redox-Active Macrocyclic Frame Structures. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2013 , 188, 84-90	1	4
86	Novel Biomimetic Cyclic P,N-Ligands. Lability of P-CH2-N Fragment: Problem or Advantage?. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2013 , 188, 27-28	1	1

85	Synthesis of Bis(2-Pyridylphosphino)Alkanes in Superbasic Medium and Their Hydroxymethyl Derivatives. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2013 , 188, 63-65	1	3
84	Host-Guest Complexes of P,N-Containing Cyclophanes with Heteroaromatic Ammonium Salts in Solution. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2013 , 188, 19-20	1	4
83	Lasagna-type arrays with halide-nitromethane cluster filling. The first recognition of the Hal(-) Hale (-) Hale	4.3	10
82	Binding of 1,5-bis(p-sulfonatophenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane with tetra(methyl viologen) calix[4]resorcinol. <i>Russian Chemical Bulletin</i> , 2012 , 61, 2295-2310	1.7	10
81	Synthesis of 1-(pyridylalkyl)-1-aza-3,6-diphosphacycloheptanes. Russian Chemical Bulletin, 2012 , 61, 179	92 <u>f.1</u> 779	7 11
80	Structure and dynamics of P,N-containing heterocycles and their metal complexes in solution. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 3182-93	2.8	23
79	Synthesis and Stereoselective Interconversion of Chiral 1-Aza-3,6-diphosphacycloheptanes. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 1857-1866	2.3	20
78	Phosphorus Based Macrocyclic Ligands: Synthesis and Applications. <i>Catalysis By Metal Complexes</i> , 2011 , 375-444		8
77	The First Example of Diazadiphosphacyclooctanes with Bicyclic Substituents. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2011 , 186, 764-765	1	4
76	Synthesis, structure, and magnetic properties of 2,2?-(buta-1,3-diyne-1,4-diyl)bis(4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide 1-oxyl). <i>Polyhedron</i> , 2011 , 30, 3232-3237	2.7	11
75	Electrochemical evaluation of a number of nickel complexes with P,N-heterocyclic ligands as catalysts for hydrogen oxidation/release. <i>Russian Journal of Physical Chemistry A</i> , 2011 , 85, 2214-2221	0.7	16
74	New Method for the Synthesis of Ammonium Salts of O,O?-Dialkyldithiophosphoric Acids on the Basis of Elemental Phosphorus and Sulfur Method for the Preparation of Effective Inhibitors for Carbon Dioxide Corrosion of Mild Steel. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> ,	1	6
73	New Method for the Preparation of Octathiotetraphosphetanes on the Basis of Elemental Phosphorus and Sulfur: Structure and Properties. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2011 , 186, 852-853	1	5
72	First Example of 14-Membered Cyclic Aminomethylphosphine. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2011 , 186, 761-763	1	9
71	Optically Active Cage P,N-Containing Cyclophanes Based on L-Menthylphosphine and Their Platinum (II) and Palladium (II) Complexes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2011 , 186, 891-893	1	7
70	Stereoselective Synthesis of Novel 18- and 20-Membered P,N-Containing Macrocyclic Phosphine Ligands. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2011 , 186, 888-890	1	6
69	Novel P,N-Containing Cyclophane with a Chiral Hydrophobic Cavity. <i>Macroheterocycles</i> , 2011 , 324-330	2.2	10

(2005-2010)

67	First representative of optically active P-L-menthyl-substituted (aminomethyl)phosphine and its borane and metal complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 5407-12	5.1	21
66	Activation and transformation of white phosphorus by palladium(ii) complexes. <i>Russian Chemical Bulletin</i> , 2010 , 59, 1116-1118	1.7	2
65	The first example of stereoselective self-assembly of a cryptand containing four asymmetric intracyclic phosphane groups. <i>Tetrahedron Letters</i> , 2010 , 51, 1034-1037	2	17
64	An effective strategy of P,N-containing macrocycle design. <i>Comptes Rendus Chimie</i> , 2010 , 13, 1151-116	72.7	34
63	P,N-Containing cyclophanes with large helical hydrophobic cavities: prospective precursors for the design of a molecular reactor. <i>Dalton Transactions</i> , 2009 , 490-4	4.3	18
62	New Synthetic Approaches to Chiral Cyclic and Macrocyclic Phosphine Ligands. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2008 , 183, 445-448	1	5
61	Stereoselective Synthesis and Interconversions of 1,9-Diaza-3,7,11,15-Tetraphosphacyclohexadecanes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2008 , 183, 456-459	1	8
60	An Effective Methodology of P,N-Macrocycles Design. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2008 , 183, 583-585	1	7
59	Novel 36- and 38-Membered P,N-Containing Cyclophanes with Large Hydrophobic Cavities. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2008 , 183, 667-668	1	4
58	13,17,53,57-Tetraphenyl-13,17,53,57-tetrathio-3,7-dithia-1,5(1,5)-di(1,5-diaza-3,7-diphosphacyclooctanawith an unusual conical-like conformation. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2008 , 60, 321-328	a)-2,4,	6 ,8(1,4)- te
57	1,3,6-Azadiphosphacycloheptanes: A novel type of heterocyclic diphosphines. <i>Heteroatom Chemistry</i> , 2008 , 19, 125-132	1.2	28
56	Synthesis of a chiral macrocyclic tetraphosphine ¶,9-di-R,R(and S,S)-⊞methylbenzyl-3,7,11,15-tetramesityl-1,9-diaza-3,7,11,15-(RSSR)-tetraphosphacyclohexadecane. <i>Mendeleev Communications</i> , 2008 , 18, 80-81	1.9	23
55	Synthesis, Molecular Structure and Coordination Chemistry of the First 1-Aza-3,7-diphosphacyclooctanes. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2007 , 633, 205-2	21 6 3	27
54	Primary and P-Alkylated o-Phosphanylphenols: Synthesis by Reduction and Reductive Alkylation of Diethyl Arylphosphonates and Screening in Ethylene Polymerization. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2007 , 633, 1995-2003	1.3	13
53	Synthesis of novel paracyclophanes with linear P,N-containing spacers. <i>Russian Chemical Bulletin</i> , 2007 , 56, 1828-1837	1.7	9
52	The first representative of novel 36-membered P,N,O-containing cyclophanes. <i>Mendeleev Communications</i> , 2007 , 17, 195-196	1.9	24
51	Synthesis, structure, and transition metal complexes of amphiphilic 1,5-diaza-3,7-diphosphacyclooctanes. <i>Heteroatom Chemistry</i> , 2006 , 17, 499-513	1.2	32
50	Synthesis and molecular structure of a chiral ferrocenylphosphine. <i>Mendeleev Communications</i> , 2005 , 15, 89-90	1.9	12

49	PH-functional o-phosphinophenols[synthesis via methoxymethylethers and screening tests for Ni-catalyzed ethylene polymerization. <i>Heteroatom Chemistry</i> , 2005 , 16, 379-390	1.2	7
48	Pd complexes of (RR)- and (SS)-1,5-methylbenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane as catalysts in alternating cooligomerization of CO with dienes. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2005 , 31, 260-268	1.6	4
47	Unexpected formation of a novel macrocyclic tetraphosphine: (RSSR)-1,9-dibenzyl-3,7,11,15-tetramesityl-1,9-diaza-3,7,11,15-tetraphosphacyclohexadecane. <i>Dalton Transactions</i> , 2004 , 357-8	4.3	30
46	Self-assembly of novel macrocyclic aminomethylphosphines with hydrophobic intramolecular cavities. <i>Dalton Transactions</i> , 2004 , 442-7	4.3	26
45	Novel chiral 1,5-diaza-3,7-diphosphacyclooctane ligands and their transition metal complexes. <i>Dalton Transactions</i> , 2003 , 2209-2214	4.3	31
44	Synthesis of New Macrocyclic Aminomethylphosphines Based on 4,4?-Diaminodiphenylmethane and Its Derivatives <i>ChemInform</i> , 2002 , 33, 173-173		
43	Water-soluble aminomethyl(ferrocenylmethyl)phosphines and their trinuclear transition metal complexes. <i>Polyhedron</i> , 2002 , 21, 2251-2256	2.7	36
42	Synthesis of new macrocyclic aminomethylphosphines based on 4,4"-diaminodiphenylmethane and its derivatives. <i>Russian Chemical Bulletin</i> , 2002 , 51, 151-156	1.7	16
41	Phosphino Amino Acids: Novel Water-Soluble Ligands for Coordination Chemistry of Transition Metals. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2002 , 177, 1469-1471	1	5
40	Synthesis of novel water-soluble linear and heterocyclic phosphino amino acids from 2-phosphinophenols or 2-phosphinophenolethers, formaldehyde and amino acids. <i>Polyhedron</i> , 2001 , 20, 3321-3331	2.7	42
39	Synthesis of novel water-soluble heterocyclic phosphino amino acids with bulky aromatic substituents on phosphorus. <i>Polyhedron</i> , 2000 , 19, 1455-1459	2.7	33
38	Synthesis, structures, and properties of 3,6-di-tert-butyl-o-benzosemiquinone complexes of copper(i) with 1,5-diaza-3,7-diphosphacyclooctanes. <i>Russian Chemical Bulletin</i> , 2000 , 49, 1782-1788	1.7	10
37	Heterocyclic Phosphorus Ligands in Coordination Chemistry of Transition Metals. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1999 , 144, 289-292	1	11
36	Synthesis of some novel water-soluble chiral phosphines. <i>Mendeleev Communications</i> , 1998 , 8, 140-141	1.9	11
35	Transformations of 1,3-di-p-tolyl-5-p-toluidinomethyl-1,3,5-diazaphosphorinane initiated by electrochemical oxidation at a glassy carbon electrode. <i>Russian Chemical Bulletin</i> , 1997 , 46, 1154-1157	1.7	4
34	Bis(O-Carboxyphenylaminomethyl)Phenylphosphine - A Novel Hybride Ligand in Coordination Chemistry of Transition Metals. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1996 , 111, 133-	133	2
33	Structure and reactions of benzo-4-diphenylphosphino-2-phenyl-1,3,2-dioxaborinane. <i>Heteroatom Chemistry</i> , 1994 , 5, 43-49	1.2	2
32	Synthesis ofcis-bis-P,P'-(triethylammonium-2,2,5-triphenyl-1,3,2,5-dioxaborataphosphorinane)dichloroplatinumii). <i>Russian Chemical Bulletin</i> , 1994 , 43, 715-716	. 1.7	

31	Kinetics of electrochemical reduction of 2-carbomethoxy-1,1-dichloro-2-methylcyclopropane by the double mediator system anthracene-PtII, PdII, and NiII complexes of cyclic aminomethylphosphines. <i>Russian Chemical Bulletin</i> , 1994 , 43, 372-374	1.7	3
30	FTIR - spectroscopy study of the three-dimensional structure of 1,3,5-diaza-phosphorinane complexes with transitional metals. <i>Journal of Molecular Structure</i> , 1993 , 293, 85-88	3.4	3
29	Isomerism in metal complexes of 1,3,5-diazaphosphorinanes. Synthesis, crystal and molecular structure of conformers ofcis-bis(1,3,5-triphenyl-1,3,5-triazaphosphorinane)dichloroplatinum(II). <i>Russian Chemical Bulletin</i> , 1993 , 42, 1587-1592	1.7	2
28	Synthesis and molecular and crystal structure oftrans-{bis(4,6-diisopropyl-2,5-diphenyl-1,3,2,5-dioxaboraphosphorinane)} dichloroplatinum(II). <i>Russian Chemical Bulletin</i> , 1993 , 42, 992-995	1.7	1
27	Complexes of 2,5-diphenyl-1,3,2,5-dioxaboraphosphorinane and 1,3,5-triphenyl-1,3,5-diazaphosphorinane with molybdenum hexacarbonyl. <i>Bulletin of the Russian Academy of Sciences Division of Chemical Science</i> , 1992 , 41, 167-169		O
26	Synthesis and properties of triethylammonium 2,2,5-triphenyl-1,3,2,5-dioxaborataphosphorinane. <i>Bulletin of the Russian Academy of Sciences Division of Chemical Science</i> , 1992 , 41, 1094-1099		1
25	Complexes of cyclic aminomethylphosphines with Pt(II), Pd(II), Cu(I), and Ag(I) salts. <i>Bulletin of the Russian Academy of Sciences Division of Chemical Science</i> , 1992 , 41, 253-259		2
24	Aminomethylphosphines in template synthesis on Pt(II), Pd(II), and Hg(II). <i>Heteroatom Chemistry</i> , 1992 , 3, 439-442	1.2	7
23	Synthesis and several properties of 1, 3, 2, 5-dioxaboraphosphorinanes with a branched substituent at the boron atom. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1991 , 40, 633-637		4
22	O-Complexes of 1,3,2,5-dioxaboraphosphorinanes with copper(I) and silver(I) salts. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1991 , 40, 804-809		1
21	Complexes of 1,3,5-triphenyl-1,3,5-diazaphosphorinane with Pt(II), Co(II), Ni(II), AND Cu(I) salts. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991 , 40, 191-193		2
20	Synthesis and structural features of 1,3,2,5-dioxaboraphosphorinane complexes with Pt(II) and Pd(II) salts. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1991 , 40, 2023-20)26	
19	Electrochemical behavior of 1,3,2,5-dioxaboraphosphorinanes and their complexes with copper(I). <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1991 , 40, 303-306		
18	P, B-Containing Heterocycles. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1990 , 49-50, 271-2	7 4	Ο
17	Synthesis of trans Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 2225-2225		1
16	Reaction of 1-butyl-1-dibutylboryl-2-diphenylphosphino-2-phenylethene with tert-butyl isocyanide. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 1957-1959		3
15	Complexes of 1,3,2,5-dioxaboraphosphorinanes with borane. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1990 , 39, 1005-1007		
14	Tautomerism in 1,3,2,5-dioxaborataphosphorinanes and their analogs. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1990 , 39, 1017-1022		

13	Synthesis, structure, and antiviral activity of hydrazinium 5-thia-1,3,2,5-dioxaborataphosphorinanes. <i>Pharmaceutical Chemistry Journal</i> , 1990 , 24, 486-489	0.9	
12	Synthesis of P, B-containing heterocycles based on bis(⊉-dihydroxybenzyl)phenylphosphine. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1989 , 38, 853-857		
11	Reaction of 1,3,5-diazaphosphorinanes with borane. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1989 , 38, 1256-1260		1
10	Reactions of bis(Hydroxyalkyl)phosphines with iminoboranes. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1988 , 37, 2172-2174		1
9	Conversion of functionally substituted phosphonium borates to phosphabetaines. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1988 , 37, 2187-2187		
8	Synthesis of phosphonium 1,3,2,5-dioxaborataphosphorinanes. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1988 , 37, 2349-2351		
7	Synthesis of 1,3-diborane-2-hydro-5-thio-1,3,2,5-diazaboraphosphorinane. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1988 , 37, 1972-1972		
6	Reaction of ammonium 1,3,2,5-dioxaborataphosphorinanes with electrophilic reagents. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1988 , 37, 143-147		
5	Reaction of bis(hydroxymethyl)phenylphosphine oxide with isobutyl diphenylborate in the presence of amines. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1988 , 37, 173-175		
4	Synthesis of triethylammonium l,4-diphenyl-3-o-hydroxyphenyl-2,8,9-trioxa-1-borata-4-phospha-6,7-benzenobicyclo[3.3.1]nonane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1987 , 36, 1969-1971		1
3	Synthesis of ammonium 1,3,2,5-dioxaborataphosphorinanes. <i>Bulletin of the Academy of Sciences of the USSR Division of Chemical Science</i> , 1986 , 35, 1490-1493		1
2	Transformations of triple-bridged binuclear copper(I) complexes based on P,N-ligands under aerobic recrystallization. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> ,1-5	1	1
1	Nickel(II) Dihydrogen and Hydride Complexes as the Intermediates of H2 Heterolytic Splitting by Nickel Diazadiphosphacyclooctane Complexes. <i>European Journal of Inorganic Chemistry</i> ,	2.3	4