
Andrey A Karasik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2837651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organoelement chemistry: promising growth areas and challenges. Russian Chemical Reviews, 2018, 87, 393-507.	6.5	157
2	New Functional Cyclic Aminomethylphosphine Ligands for the Construction of Catalysts for Electrochemical Hydrogen Transformations. Chemistry - A European Journal, 2014, 20, 3169-3182.	3.3	66
3	Synthesis of novel pyridyl containing phospholanes and their polynuclear luminescent copper(<scp>i</scp>) complexes. Dalton Transactions, 2016, 45, 2250-2260.	3.3	63
4	Synthesis of novel water-soluble linear and heterocyclic phosphino amino acids from 2-phosphinophenols or 2-phosphinophenolethers, formaldehyde and amino acids. Polyhedron, 2001, 20, 3321-3331.	2.2	43
5	Water-soluble aminomethyl(ferrocenylmethyl)phosphines and their trinuclear transition metal complexes. Polyhedron, 2002, 21, 2251-2256.	2.2	38
6	An effective strategy of P,N-containing macrocycle design. Comptes Rendus Chimie, 2010, 13, 1151-1167.	0.5	38
7	Chelating cyclic aminomethylphosphines and their transition metal complexes as a promising basis of bioinspired mimetic catalysts. Mendeleev Communications, 2013, 23, 237-248.	1.6	37
8	Synthesis, structure, and transition metal complexes of amphiphilic 1,5-diaza-3,7-diphosphacyclooctanes. Heteroatom Chemistry, 2006, 17, 499-513.	0.7	36
9	Synthesis of novel water-soluble heterocyclic phosphino amino acids with bulky aromatic substituents on phosphorus. Polyhedron, 2000, 19, 1455-1459.	2.2	34
10	The Assembly of Unique Hexanuclear Copper(I) Complexes with Effective White Luminescence. Inorganic Chemistry, 2019, 58, 1048-1057.	4.0	34
11	Novel chiral 1,5-diaza-3,7-diphosphacyclooctane ligands and their transition metal complexes. Dalton Transactions, 2003, , 2209-2214.	3.3	33
12	1,3,6â€Azadiphosphacycloheptanes: A novel type of heterocyclic diphosphines. Heteroatom Chemistry, 2008, 19, 125-132.	0.7	32
13	Unexpected ligand effect on the catalytic reaction rate acceleration for hydrogen production using biomimetic nickel electrocatalysts with 1,5-diaza-3,7-diphosphacyclooctanes. Journal of Organometallic Chemistry, 2015, 789-790, 14-21.	1.8	31
14	Unexpected formation of a novel macrocyclic tetraphosphine: (RSSR)-1,9-dibenzyl-3,7,11,15-tetramesityl-1,9-diaza-3,7,11,15-tetraphosphacyclohexadecane. Dalton Transactions, 2004, , 357-358.	3.3	30
15	A stimuli-responsive Au(<scp>i</scp>) complex based on an aminomethylphosphine template: synthesis, crystalline phases and luminescence properties. CrystEngComm, 2016, 18, 7629-7635.	2.6	30
16	Self-assembly of novel macrocyclic aminomethylphosphines with hydrophobic intramolecular cavities. Dalton Transactions, 2004, , 442-447.	3.3	27
17	Synthesis, Molecular Structure and Coordination Chemistry of the First 1-Aza-3,7-diphosphacyclooctanes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 205-210.	1.2	27
18	Supporting effect of polyethylenimine on hexarhenium hydroxo cluster complex for cellular imaging applications. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 340, 46-52.	3.9	27

#	Article	IF	CITATIONS
19	The first representative of novel 36-membered P,N,O-containing cyclophanes. Mendeleev Communications, 2007, 17, 195-196.	1.6	26
20	Cyclic aminomethylphosphines as ligands. Rational design and unpredicted findings. Pure and Applied Chemistry, 2017, 89, 293-309.	1.9	26
21	Fresh Look on the Nature of Dual-Band Emission of Octahedral Copper-Iodide Clusters—Promising Ratiometric Luminescent Thermometers. Journal of Physical Chemistry C, 2019, 123, 25863-25870.	3.1	26
22	Structure and Dynamics of P,N-Containing Heterocycles and Their Metal Complexes in Solution. Journal of Physical Chemistry A, 2012, 116, 3182-3193.	2.5	25
23	Alternating stereoselective self-assembly of SSSS/RRRR or RSSR isomers of tetrakisphosphines in the row of 14-, 16-, 18- and 20-membered macrocycles. Dalton Transactions, 2014, 43, 12784-12789.	3.3	24
24	Synthesis and unique reversible splitting of 14-membered cyclic aminomethylphosphines on to 7-membered heterocycles. Dalton Transactions, 2015, 44, 13565-13572.	3.3	24
25	In situ electrochemical synthesis of Ni(I) complexes with aminomethylphosphines as intermediates for hydrogen evolution. Electrochimica Acta, 2017, 225, 467-472.	5.2	24
26	Synthesis of a chiral macrocyclic tetraphosphine –1,9-di-R,R(and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 To Mendeleev Communications, 2008, 18, 80-81.	d (S,S)-α-n 1.6	nethylbenzyl-3 23
27	First Representative of Optically Active P-I-Menthyl-Substituted (Aminomethyl)phosphine and Its Borane and Metal Complexes. Inorganic Chemistry, 2010, 49, 5407-5412.	4.0	21
28	Synthesis and Stereoselective Interconversion of Chiral 1â€Azaâ€3,6â€diphosphacycloheptanes. European Journal of Inorganic Chemistry, 2012, 2012, 1857-1866.	2.0	21
29	Cu ₄ I ₄ -cubane clusters based on 10-(aryl)phenoxarsines and their luminescence. Dalton Transactions, 2020, 49, 482-491.	3.3	21
30	P,N-Containing cyclophanes with large helical hydrophobic cavities: prospective precursors for the design of a molecular reactor. Dalton Transactions, 2009, , 490-494.	3.3	20
31	Heterocyclic Phosphines with P-C-X Fragments (X=O, N, P). Advances in Heterocyclic Chemistry, 2015, , 83-130.	1.7	20
32	Intriguing Near-Infrared Solid-State Luminescence of Binuclear Silver(I) Complexes Based on Pyridylphospholane Scaffolds. Inorganic Chemistry, 2019, 58, 7698-7704.	4.0	20
33	Phosphorus Based Macrocyclic Ligands: Synthesis and Applications. Catalysis By Metal Complexes, 2011, , 375-444.	0.6	19
34	"Host–guest―binding of a luminescent dinuclear Au(<scp>i</scp>) complex based on cyclic diphosphine with organic substrates as a reason for luminescence tuneability. New Journal of Chemistry, 2016, 40, 9853-9861.	2.8	19
35	Structure, Conformation, and Dynamics of P,N-Containing Cyclophanes in Solution. Journal of Physical Chemistry A, 2010, 114, 2588-2596.	2.5	18
36	Title is missing!. Russian Chemical Bulletin, 2002, 51, 151-156.	1.5	17

#	Article	IF	CITATIONS
37	The first example of stereoselective self-assembly of a cryptand containing four asymmetric intracyclic phosphane groups. Tetrahedron Letters, 2010, 51, 1034-1037.	1.4	17
38	Electrochemical evaluation of a number of nickel complexes with P,N-heterocyclic ligands as catalysts for hydrogen oxidation/release. Russian Journal of Physical Chemistry A, 2011, 85, 2214-2221.	0.6	16
39	The formation of secondary arylphosphines in the reaction of organonickel sigma-complex [NiBr(Mes)(bpy)], where Mes = 2,4,6-trimethylphenyl, bpy = 2,2′-bipyridine, with phenylphosphine. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1475-1477.	1.6	16
40	Pyridyl Containing 1,5-Diaza-3,7-diphosphacyclooctanes as Bridging Ligands for Dinuclear Copper(I) Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 895-902.	1.2	16
41	Novel water soluble cationic Au(I) complexes with cyclic PNNP ligand as building blocks for heterometallic supramolecular assemblies with anionic hexarhenium cluster units. Journal of Luminescence, 2018, 196, 485-491.	3.1	16
42	Synthesis of New Examples of Corands with 16-Membered P,N-Containing Core Ring. Macroheterocycles, 2014, 7, 181-188.	0.5	16
43	Primary and <i>P</i> â€Alkylated <i>o</i> â€Phosphanylphenols: Synthesis by Reduction and Reductive Alkylation of Diethyl Arylphosphonates and Screening in Ethylene Polymerization. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1995-2003.	1.2	15
44	Organometallic Polymer Electrolyte Membrane Fuel Cell Bisâ€Ligand Nickel(Ii) Complex of 1,5â€Diâ€ <i>P</i> â€Tolylâ€3,7â€Dipyridineâ€1,5,3,7â€Diazadiphosphacycloâ€Octane Catalyst. Energy Techno 1088-1095.	og y, &018	8, 615
45	Binuclear Gold(I) Phosphine Alkynyl Complexes Templated on a Flexible Cyclic Phosphine Ligand: Synthesis and Some Features of Solid-State Luminescence. Inorganic Chemistry, 2020, 59, 244-253.	4.0	15
46	Nickel(II) Dihydrogen and Hydride Complexes as the Intermediates of H ₂ Heterolytic Splitting by Nickel Diazadiphosphacyclooctane Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 4265-4272.	2.0	15
47	Synthetic organometallic models of iron-containing hydrogenases as molecular electrocatalysts for hydrogen evolution or oxidation. Russian Chemical Reviews, 2017, 86, 298-317.	6.5	14
48	Synthesis and molecular structure of a chiral ferrocenylphosphine. Mendeleev Communications, 2005, 15, 89-90.	1.6	13
49	Synthesis, structure, and magnetic properties of 2,2′-(buta-1,3-diyne-1,4-diyl)bis(4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide 1-oxyl). Polyhedron, 2011, 30, 3232-3237.	2.2	13
50	Nickel complexes with cyclic ligands containing P and N atoms as coordination sites: novel biomimetic catalysts for hydrogen oxidation. Russian Chemical Bulletin, 2013, 62, 1003-1009.	1.5	13
51	Influence of the rac–meso isomerization of seven-membered cyclic bisphosphines on the predominant formation of chelate complexes. Polyhedron, 2015, 100, 344-350.	2.2	13
52	Luminescent complexes on a scaffold of P ₂ N ₂ -ligands: design of materials for analytical and biomedical applications. Pure and Applied Chemistry, 2019, 91, 839-849.	1.9	13
53	Luminescent Cu ₄ I ₄ -cubane clusters based on <i>N</i> -methyl-5,10-dihydrophenarsazines. Dalton Transactions, 2021, 50, 13421-13429.	3.3	13
54	Synthesis of 1-(pyridylalkyl)-1-aza-3,6-diphosphacycloheptanes. Russian Chemical Bulletin, 2012, 61, 1792-1797.	1.5	12

#	Article	IF	CITATIONS
55	A Series of Cu ₂ 1 ₂ Complexes of 10â€(Aryl)phenoxarsines: Synthesis and Structural Diversity. ChemistrySelect, 2017, 2, 11755-11761.	1.5	12
56	Unpredicted concurrency between P,P-chelate and P,P-bridge coordination modes of 1,5-diR-3,7-di(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane ligands in copper(I) complexes. Polyhedron, 2018, 139, 1-6.	2.2	12
57	Binuclear charged copper(I) complex as a multimode luminescence thermal sensor. Sensors and Actuators A: Physical, 2021, 325, 112722.	4.1	12
58	Synthesis of some novel water-soluble chiral phosphines. Mendeleev Communications, 1998, 8, 140-141.	1.6	11
59	Heterocyclic Phosphorus Ligands in Coordination Chemistry of Transition Metals. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 289-292.	1.6	11
60	Synthesis, structures, and properties of 3,6-di-tert-butyl-o-benzosemiquinone complexes of copper(i) with 1,5-diaza-3,7-diphosphacyclooctanes. Russian Chemical Bulletin, 2000, 49, 1782-1788.	1.5	11
61	Binding of 1,5-bis(p-sulfonatophenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane with tetra(methyl) Tj ETC	Qq1_1_0.78	84314 rgBT (C 11
62	Macrocyclic tetrakis-phosphines and their copper(I) complexes. Pure and Applied Chemistry, 2017, 89, 331-339.	1.9	11
63	Chiral [16]-ane P ₄ N ₂ macrocycles: stereoselective synthesis and unexpected intermolecular exchange of endocyclic fragments. Dalton Transactions, 2018, 47, 16977-16984.	3.3	11
64	Triple-bridged helical binuclear copper(<scp>i</scp>) complexes: Head-to-head and head-to-tail isomerism and the solid-state luminescence. Dalton Transactions, 2020, 49, 11997-12008.	3.3	11
65	Assembly of Heterometallic AuICu ₂ 1 ₂ Cores on the Scaffold of NPPN-Bridging Cyclic Bisphosphine. Inorganic Chemistry, 2021, 60, 5402-5411.	4.0	11
66	Novel P,N-Containing Cyclophane with a Chiral Hydrophobic Cavity. Macroheterocycles, 2011, , 324-330.	0.5	11
67	Lasagna-type arrays with halide–nitromethane cluster filling. The first recognition of the Halâ"â√HCH2NO2 (Hal = Cl, Br, I) hydrogen bonding. Dalton Transactions, 2012, 41, 6922.	3.3	10
68	Electrodriven molecular system based on tetraviologen calix[4]resorcine and dianion 1,5-bis(n-sulfonatophenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane. Electrochimica Acta, 2013, 111, 466-473.	5.2	10
69	Conformational Analysis of P,Nâ€Containing Eightâ€Membered Heterocycles and Their Pt/Ni Complexes in Solution. European Journal of Inorganic Chemistry, 2016, 2016, 1068-1084.	2.0	10
70	Covalent self-assembly of the specific RSSR isomer of 14-membered tetrakisphosphine. Dalton Transactions, 2017, 46, 12417-12420.	3.3	10
71	Synthesis of novel paracyclophanes with linear P,N-containing spacers. Russian Chemical Bulletin, 2007, 56, 1828-1837.	1.5	9
	13,17,53,57-Tetraphenyl-13,17,53,57-tetrathio-3,7-dithia-1,5(1,5)-di(1,5-diaza-3,7-diphosphacyclooctana)-2,4,6	.8(1.4)-tet	rabenzenacyo

 ^{13,17,53,57-}Tetraphenyl-13,17,53,57-tetrathio-3,7-dithia-1,5(1,5)-di(1,5-diaza-3,7-diphosphacyclooctana)-2,4,6,8(1,4)-tetrabenzenacyc
with an unusual conical-like conformation. Journal of Inclusion Phenomena and Macrocyclic
1.6
Chemistry, 2008, 60, 321-328.

#	Article	IF	CITATIONS
73	First Example of 14-Membered Cyclic Aminomethylphosphine. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 761-763.	1.6	9
74	Binding of 1,5-bis(p-sulfonatophenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane with tetramethylviologen calix[4]resorcin with a methyl radical in the resorcinol ring. Russian Journal of Electrochemistry, 2014, 50, 142-153.	0.9	9
75	Synthesis of Au(I) complex-based aqueous colloids for sensing of biothiols. Inorganica Chimica Acta, 2019, 485, 26-32.	2.4	9
76	Aminomethylphosphines in template synthesis on Pt(II), Pd(II), and Hg(II). Heteroatom Chemistry, 1992, 3, 439-442.	0.7	8
77	PH-functionalo-phosphinophenols— synthesis via methoxymethylethers and screening tests for Ni-catalyzed ethylene polymerization. Heteroatom Chemistry, 2005, 16, 379-390.	0.7	8
78	Stereoselective Synthesis and Interconversions of 1,9-Diaza-3,7,11,15-Tetraphosphacyclohexadecanes. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 456-459.	1.6	8
79	Optically Active Cage P,N-Containing Cyclophanes Based on L-Menthylphosphine and Their Platinum (II) and Palladium (II) Complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 891-893.	1.6	8
80	Synthesis of water-soluble bis-N,O-chelate nickel(II) complexes based on new ligands – P-pyridyl-containing phospholane oxides. Russian Chemical Bulletin, 2018, 67, 1206-1211.	1.5	8
81	Polyelectrolyte-coated ultra-small nanoparticles with Tb(III)-centered luminescence as cell labels with unusual charge effect on their cell internalization. Materials Science and Engineering C, 2019, 95, 166-173.	7.3	8
82	New P,N-Containing Cyclophanes with Exocyclic Pyridyl Containing Substituents on Phosphorus Atoms. Macroheterocycles, 2015, 8, 402-408.	0.5	8
83	First Representatives of Aul Complexes of P,N-Containing Bicyclo[7.7.5]henicosane. Macroheterocycles, 2016, 9, 46-49.	0.5	8
84	An Effective Methodology of P,N-Macrocycles Design. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 583-585.	1.6	7
85	Synthesis of first representatives of 46-membered P,N,O-containing cyclophanes and their transition metal complexes. Russian Chemical Bulletin, 2016, 65, 1319-1324.	1.5	7
86	Novel representatives of 16-membered aminomethylphosphines with alkyl substituents at nitrogen and their gold(I) complexes. Russian Chemical Bulletin, 2018, 67, 328-335.	1.5	7
87	The first representatives of tetranuclear gold(<scp>i</scp>) complexes of P,N-containing cyclophanes. Dalton Transactions, 2018, 47, 7715-7720.	3.3	7
88	Impact of oppositely charged shell and cores on interaction of core-shell colloids with differently charged proteins as a route for tuning of the colloids cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111306.	5.0	7
89	Dynamic Covalent Chemistry Approach toward 18-Membered P ₄ N ₂ Macrocycles and Their Nickel(II) Complexes. Journal of Organic Chemistry, 2020, 85, 14610-14618.	3.2	7
90	Electrochemical and catalytic properties of nickel(II) complexes with bis(imino)acenaphthene and diazadiphosphacyclooctane ligands. Mendeleev Communications, 2020, 30, 302-304.	1.6	7

#	Article	IF	CITATIONS
91	New Method for the Synthesis of Ammonium Salts of O,Oâ€ ² -Dialkyldithiophosphoric Acids on the Basis of Elemental Phosphorus and Sulfur—A Method for the Preparation of Effective Inhibitors for Carbon Dioxide Corrosion of Mild Steel. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 997-998.	1.6	6
92	Stereoselective Synthesis of Novel 18- and 20-Membered P,N-Containing Macrocyclic Phosphine Ligands. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 888-890.	1.6	6
93	Cyclic Phosphino Amino Pyridines—Novel Instrument for Construction of Catalysts and Luminescent Materials. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 729-732.	1.6	6
94	Direct phosphorylation of pyridine in the presence of Ni(BF ₄) ₂ bpy and CoCl ₂ bpy metal complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1545-1546.	1.6	6
95	Selfâ€Assembly of Chiral 1,8â€Diazaâ€3,6,10,13â€tetraphosphacyclotetradecanes via Dynamic Transformation of 7―and 14â€Membered Aminomethylphosphines. European Journal of Inorganic Chemistry, 2019, 2019, 3053-3060.	2.0	6
96	Platinum(II) Complexes with 10-(Aryl)phenoxarsines: Synthesis, Cis/Trans Isomerization, and Luminescence. Inorganic Chemistry, 2021, 60, 6804-6812.	4.0	6
97	Structure impact on photodynamic therapy and cellular contrasting functions of colloids constructed from dimeric Au(I) complex and hexamolybdenum clusters. Materials Science and Engineering C, 2021, 128, 112355.	7.3	6
98	"Proton sponge―effect and apoptotic cell death mechanism of Ag -Re6 nanocrystallites derived from the assembly of [{Re6S8}(OH)6–(H2O)]4 with Ag+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129312.	4.7	6
99	Transformations of 1,3-di-p-tolyl-5-p-toluidinomethyl-1,3,5-diazaphosphorinane initiated by electrochemical oxidation at a glassy carbon electrode. Russian Chemical Bulletin, 1997, 46, 1154-1157.	1.5	5
100	Phosphino Amino Acids: Novel Water-Soluble Ligands for Coordination Chemistry of Transition Metals. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1469-1471.	1.6	5
101	Pd complexes of (RR)- and (SS)-1,5-methylbenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane as catalysts in alternating cooligomerization of CO with dienes. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2005, 31, 260-268.	1.0	5
102	New Synthetic Approaches to Chiral Cyclic and Macrocyclic Phosphine Ligands. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 445-448.	1.6	5
103	New Method for the Preparation of Octathiotetraphosphetanes on the Basis of Elemental Phosphorus and Sulfur: Structure and Properties. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 852-853.	1.6	5
104	Electrochemical switching of monomer—associate in the system tetraviologen calix[4]resorcinol—3,7-di(l-menthyl)-1,5-di(p-sulfonatophenyl)-1,5-diaza-3,7-diphosphacyclooctane. Russian Chemical Bulletin, 2013, 62, 2158-2170.	1.5	5
105	New aminomethylphosphines with cyanophenyl substituents at the nitrogen atoms. Russian Chemical Bulletin, 2013, 62, 2487-2494.	1.5	5
106	New Biomimetic Catalysts for the Electrochemical Processes on the Basis of Redox-Active Macrocyclic Frame Structures. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 84-90.	1.6	5
107	Copper(II) Complexes with N,O-Hybrid Ligands based on Pyridyl-Containing Phospholane Oxides. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2020, 46, 600-607.	1.0	5
108	Rearrangement of two 8-membered 1,5-diaza-3,7-diphosphacyclooctane rings into 16-membered P4N4 ligand on the gold(i) template. Mendeleev Communications, 2020, 30, 40-42.	1.6	5

#	Article	IF	CITATIONS
109	Synthesis and several properties of 1, 3, 2, 5-dioxaboraphosphorinanes with a branched substituent at the boron atom. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 633-637.	0.0	4
110	Novel 36- and 38-Membered P,N-Containing Cyclophanes with Large Hydrophobic Cavities. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 667-668.	1.6	4
111	The First Example of Diazadiphosphacyclooctanes with Bicyclic Substituents. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 764-765.	1.6	4
112	Host-Guest Complexes of P,N-Containing Cyclophanes with Heteroaromatic Ammonium Salts in Solution. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 19-20.	1.6	4
113	Cu(I) Complexes of 14-Membered Cyclic Tetraphosphines. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 824-826.	1.6	4
114	Tetracarbonyltungsten (0) and –molybdenum (0) complexes of P,N-containing cyclophanes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1581-1582.	1.6	4
115	Iron or nickel complexes bearing diphosphine and BIAN ligands as electrocatalysts for H ₂ evolution. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1644-1645.	1.6	4
116	10-(Aryl)phenoxarsines as ligands for design of polynuclear Cu(I) complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1587-1588.	1.6	4
117	New catalysts for PEM fuel cells. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1488-1490.	1.6	4
118	New 18-membered tetrakisphosphine macrocycle and its derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1591-1592.	1.6	4
119	Synthesis and Structure of Iron (II) Complexes of Functionalized 1,5-Diaza-3,7-Diphosphacyclooctanes. Molecules, 2020, 25, 3775.	3.8	4
120	Stereoselective synthesis of the RPSPSPRP isomer of 22-membered P4N2 macrocycles. Mendeleev Communications, 2020, 30, 697-699.	1.6	4
121	Reaction of 1-butyl-1-dibutylboryl-2-diphenylphosphino-2-phenylethene with tert-butyl isocyanide. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 1957-1959.	0.0	3
122	FTIR - spectroscopy study of the three-dimensional structure of 1,3,5-diaza-phosphorinane complexes with transitional metals. Journal of Molecular Structure, 1993, 293, 85-88.	3.6	3
123	Structure and reactions of benzo-4-diphenylphosphino-2-phenyl-1,3,2-dioxaborinane. Heteroatom Chemistry, 1994, 5, 43-49.	0.7	3
124	Kinetics of electrochemical reduction of 2-carbomethoxy-1,1-dichloro-2-methylcyclopropane by the double mediator system anthracene-PtII, PdII, and NiII complexes of cyclic aminomethylphosphines. Russian Chemical Bulletin, 1994, 43, 372-374.	1.5	3
125	Activation and transformation of white phosphorus by palladium(ii) complexes. Russian Chemical Bulletin, 2010, 59, 1116-1118.	1.5	3
126	Nickel(II) Complexes of Novel P,N-Heterocycles Based on Pyridylphosphines. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 59-60.	1.6	3

#	Article	IF	CITATIONS
127	Synthesis of Bis(2-Pyridylphosphino)Alkanes in Superbasic Medium and Their Hydroxymethyl Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 63-65.	1.6	3
128	Luminescent copper(I) and gold(I) complexes of 1,5-diaza-3,7-diphosphacyclooctanes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1518-1519.	1.6	3
129	Novel functionalized 1,5-diaza-3,7-diphosphacyclooctanes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1515-1517.	1.6	3
130	Reversible temperature-responsible emission in solutions within 293–333â€⁻K produced by dissociative behavior of multinuclear Cu(I) complexes with aminomethylphosphines. Inorganica Chimica Acta, 2019, 498, 119125.	2.4	3
131	Application of density functional theory and optical spectroscopy for the prediction of the photophysical properties of Đ-pyridylphospholanes. Russian Chemical Bulletin, 2019, 68, 254-261.	1.5	3
132	Luminescent complexes of 1,5-diaza-3,7-diphosphacyclooctanes with coinage metals. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 410-414.	1.6	3
133	Intracyclic iron(II) complexes based on 16-membered P ₄ N ₂ corands. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 438-439.	1.6	3
134	Synthesis of Cu(I) complexes of 10-(m-(R)-phenyl)phenoxarsines. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 480-481.	1.6	3
135	New Gold(I) Complexes with 1,5-Diaza-3,7-Diphosphacyclooctanes: Synthesis and Structures. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2020, 46, 477-484.	1.0	3
136	Water dispersible supramolecular assemblies built from luminescent hexarhenium clusters and silver(I) complex with pyridine-2-ylphospholane for sensorics. Journal of Molecular Liquids, 2020, 305, 112853.	4.9	3
137	Study of the structures and photophysical properties of 1,3-diaza-5-phosphacyclohexanes using density functional theory and optical spectroscopy. Russian Chemical Bulletin, 2020, 69, 449-457.	1.5	3
138	Complexes of 1,3,5-triphenyl-1,3,5-diazaphosphorinane with Pt(II), Co(II), Ni(II), AND Cu(I) salts. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 191-193.	0.0	2
139	Complexes of cyclic aminomethylphosphines with Pt(II), Pd(II), Cu(I), and Ag(I) salts. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 253-259.	0.0	2
140	Isomerism in metal complexes of 1,3,5-diazaphosphorinanes. Synthesis, crystal and molecular structure of conformers ofcis-bis(1,3,5-triphenyl-1,3,5-triazaphosphorinane)dichloroplatinum(II). Russian Chemical Bulletin, 1993, 42, 1587-1592.	1.5	2
141	Bis(O-Carboxyphenylaminomethyl)Phenylphosphine - A Novel Hybride Ligand in Coordination Chemistry of Transition Metals. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 133-133.	1.6	2
142	Anodic oxidation of 1,3-di(paratolyl)-5-paratoluidinomethyl-1,3,5-diazaphosphorinane on aluminum. Russian Journal of Electrochemistry, 2014, 50, 1102-1104.	0.9	2
143	Metal complexes with aminomethylphosphines: Ni vs. Co in hydrogen evolution. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1604-1605.	1.6	2
144	Cyclic aminomethylphosphines as ligands: Balancing between rational design and unpredicted findings. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1413-1415.	1.6	2

#	Article	IF	CITATIONS
145	Synthesis of 1-pyridylphospholane-1-oxides and their Ni(II) complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1630-1631.	1.6	2
146	1,5â€Diazaâ€3,7â€Diphosphacyclooctane Bis ‣igand Nickel(II) Complexes as Oxygen Reduction Catalysts for Protonâ€Exchange Membrane Fuel Cells. Energy Technology, 2019, 7, 1900020.	3.8	2
147	Complexes of Phosphorus-containing Cyclophanes and Cryptands with Metals, Anions, and Organic Substrates. Russian Journal of Organic Chemistry, 2019, 55, 1642-1660.	0.8	2
148	STRUCTURAL FEATURES OF BINUCLEAR COPPER(I) COMPLEXES WITH 10-M-(ARYL)PHENOXARSINES. Journal of Structural Chemistry, 2020, 61, 1931-1937.	1.0	2
149	Transformations of triple-bridged binuclear copper(I) complexes based on P,N-ligands under aerobic recrystallization. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 620-624.	1.6	2
150	Synthesis of ammonium 1,3,2,5-dioxaborataphosphorinanes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 1490-1493.	0.0	1
151	Synthesis of triethylammonium l,4-diphenyl-3-o-hydroxyphenyl-2,8,9-trioxa-1-borata-4-phospha-6,7-benzenobicyclo[3.3.1]nonane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1987, 36, 1969-1971.	0.0	1
152	Reactions of bis(?-hydroxyalkyl)phosphines with iminoboranes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 2172-2174.	0.0	1
153	Reaction of 1,3,5-diazaphosphorinanes with borane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 1256-1260.	0.0	1
154	P, B-Containing Heterocycles. Phosphorus, Sulfur and Silicon and the Related Elements, 1990, 49-50, 271-274.	1.6	1
155	Synthesis of trans Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 2225-2225.	0.0	1
156	O-Complexes of 1,3,2,5-dioxaboraphosphorinanes with copper(I) and silver(I) salts. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 804-809.	0.0	1
157	Complexes of 2,5-diphenyl-1,3,2,5-dioxaboraphosphorinane and 1,3,5-triphenyl-1,3,5-diazaphosphorinane with molybdenum hexacarbonyl. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 167-169.	0.0	1
158	Synthesis and properties of triethylammonium 2,2,5-triphenyl-1,3,2,5-dioxaborataphosphorinane. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 1094-1099.	0.0	1
159	Synthesis and molecular and crystal structure oftrans-{bis(4,6-diisopropyl-2,5-diphenyl-1,3,2,5-dioxaboraphosphorinane)} dichloroplatinum(II). Russian Chemical Bulletin, 1993, 42, 992-995.	1.5	1
160	Novel Biomimetic Cyclic P,N-Ligands. Lability of P-CH2-N Fragment: Problem or Advantage?. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 27-28.	1.6	1
161	Binuclear Au(I) And Ag(I) Complexes of Novel 1-(Pyridine-2-Yl)Phospholane. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 827-830.	1.6	1
162	Novel chiral 14-membered aminomethylphosphines. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1533-1534.	1.6	1

#	Article	IF	CITATIONS
163	Macrocyclic tetraphosphine corands and their complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1444-1446.	1.6	1
164	Electrooxidation of 1,3–di(para-tolyl)-5-para-toluidinomethyl-1,3,5-diazaphosphorinane on soluble metallic anodes. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 50-52.	1.6	1
165	Synthesis and Structure of N-Pyridyl-Containing Cyclic Aminomethylphosphines. Russian Journal of General Chemistry, 2018, 88, 2257-2262.	0.8	1
166	Synthesis of a 16-Membered P4N2 Macrocycle with Pyridyl-Substituted Phosphorus Atoms. Russian Journal of General Chemistry, 2018, 88, 2449-2452.	0.8	1
167	Synthesis of palladium (II) complexes of N-p-iodophenyl substituted 1,5-diaza-3,7-diphosphacyclooctanes. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 515-516.	1.6	1
168	Insight into the influence of terminal ligands on magnetic exchange coupling in a series of dimeric copper(II) acetate adducts. International Journal of Quantum Chemistry, 2020, 120, e26145.	2.0	1
169	Pt―and Pdâ€Complexes with Acyclic and Heterocyclic <i>P</i> â€Hydroxyarylâ€Substituted <i>N</i> â€Phosphanylmethyl Amino Acids RP(CH ₂ NHR') ₂ and (RPCH ₂ NR'CH ₂) ₂ – Evaluation of (P [^] O)M Chelate Formation, European Journal of Inorganic Chemistry, 2020, 2020, 3682-3691.	2.0	1
170	Synthesis of New 1,3,5-Azadiphosphorinanes Based on Aliphatic Amines. Russian Journal of General Chemistry, 2020, 90, 224-228.	0.8	1
171	Conversion of functionally substituted phosphonium borates to phosphabetaines. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 2187-2187.	0.0	Ο
172	Synthesis of phosphonium 1,3,2,5-dioxaborataphosphorinanes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 2349-2351.	0.0	0
173	Synthesis of 1,3-diborane-2-hydro-5-thio-1,3,2,5-diazaboraphosphorinane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 1972-1972.	0.0	Ο
174	Reaction of ammonium 1,3,2,5-dioxaborataphosphorinanes with electrophilic reagents. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 143-147.	0.0	0
175	Reaction of bis(hydroxymethyl)phenylphosphine oxide with isobutyl diphenylborate in the presence of amines. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 173-175.	0.0	Ο
176	Synthesis of P, B-containing heterocycles based on bis(?,2-dihydroxybenzyl)phenylphosphine. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 853-857.	0.0	0
177	Complexes of 1,3,2,5-dioxaboraphosphorinanes with borane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 1005-1007.	0.0	Ο
178	Tautomerism in 1,3,2,5-dioxaborataphosphorinanes and their analogs. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 1017-1022.	0.0	0
179	Synthesis, structure, and antiviral activity of hydrazinium 5-thia-1,3,2,5-dioxaborataphosphorinanes. Pharmaceutical Chemistry Journal, 1990, 24, 486-489.	0.8	0
180	Synthesis and structural features of 1,3,2,5-dioxaboraphosphorinane complexes with Pt(II) and Pd(II) salts. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 2023-2026.	0.0	0

#	Article	IF	CITATIONS
181	Electrochemical behavior of 1,3,2,5-dioxaboraphosphorinanes and their complexes with copper(I). Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 303-306.	0.0	0
182	Synthesis Russian Chemical Bulletin, 1994, 43, 715-716.	1.5	0
183	1,3,5-Diazaphosphorinanes on the Pt-Group Metal Templates. Conformational Behaviour of the Heterocyclic Ligands and Stabilization of Unusual Coordination of Pt(II) Ion. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 57-57.	1.6	0
184	Synthesis of New Macrocyclic Aminomethylphosphines Based on 4,4â€2â€Điaminodiphenylmethane and Its Derivatives ChemInform, 2002, 33, 173-173.	0.0	0
185	Electrochemically controlled binding of bis-P,P-chelate platinum(II) dication to 3,7-di(2-pyridyl)-1,5-diphenyl-1,5-diaza-3,7-diphosphacyclooctane complex and ferrocyanide ion with tetraviologen calix[4]resorcinol. Russian Chemical Bulletin, 2015, 64, 291-305.	1.5	0
186	Nickel-organic complexes as catalyst in PEM fuel cells. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1654-1655.	1.6	0
187	Structure and dynamics of eight-membered P,N-heterocycles in solution. Russian Journal of General Chemistry, 2016, 86, 584-589.	0.8	0
188	EPR-spectroelectrochemistry of nickel–organic complexes—small molecules activators. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1613-1614.	1.6	0
189	Synthesis and coordination properties of phospholanopyridinium hydrochlorides. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 502-505.	1.6	0
190	Bis-chelate nickel(II) complex with a 1,5-diaza-3,7-diphosphacyclooctane ligand: Solid-state structure and redox properties. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 337-338.	1.6	0
191	Bis-chelate iron(II) complex with a 1,5-diaza-3,7-diphosphacyclooctane ligand: X-ray structure and redox properties. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 353-354.	1.6	0
192	Novel iron (II) complexes of 1,5-diaza-3,7-diphosphacyclooctanes. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 558-559.	1.6	0
193	Synthesis and Crystal and Molecular Structures of 1,3-Di-p-tolyl-5-(5'-allyl) Tj ETQq1 1 0.784314 rgBT /Overlock of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 189-194.	10 Tf 50 2 1.0	67 Td (2'-et 0