## Reto Trappitsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2837639/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | NUGRID STELLAR DATA SET. I. STELLAR YIELDS FROM H TO BI FOR STARS WITH METALLICITIES $Z = 0.02$ and $Z = 0.01$ . Astrophysical Journal, Supplement Series, 2016, 225, 24.                                                                                                        | 7.7  | 172       |
| 2  | CHILI – the Chicago Instrument for Laser Ionization – a new tool for isotope measurements in cosmochemistry. International Journal of Mass Spectrometry, 2016, 407, 1-15.                                                                                                        | 1.5  | 68        |
| 3  | APPLICATION OF A THEORY AND SIMULATION-BASED CONVECTIVE BOUNDARY MIXING MODEL FOR AGB STAR EVOLUTION AND NUCLEOSYNTHESIS. Astrophysical Journal, 2016, 827, 30.                                                                                                                  | 4.5  | 62        |
| 4  | CARBON-RICH PRESOLAR GRAINS FROM MASSIVE STARS: SUBSOLAR <sup>12</sup> C/ <sup>13</sup> C AND <sup>14</sup> N/ <sup>15</sup> N RATIOS AND THE MYSTERY OF <sup>15</sup> N. Astrophysical Journal Letters, 2015, 808, L43.                                                         | 8.3  | 61        |
| 5  | Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1884-1889.                                                                                 | 7.1  | 57        |
| 6  | NuGrid stellar data set – III. Updated low-mass AGB models and s-process nucleosynthesis with<br>metallicities Z=Â0.01, ZÂ=Â0.02, and ZÂ=Â0.03. Monthly Notices of the Royal Astronomical Society, 2019, 489,<br>1082-1098.                                                      | 4.4  | 46        |
| 7  | MESA and NuGrid simulations of classical novae: CO and ONe nova nucleosynthesis. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2058-2074.                                                                                                                        | 4.4  | 45        |
| 8  | New Constraints on the Abundance of <sup>60</sup> Fe in the Early Solar System. Astrophysical<br>Journal Letters, 2018, 857, L15.                                                                                                                                                | 8.3  | 40        |
| 9  | Chronology of martian breccia NWA 7034 and the formation of the martian crustal dichotomy.<br>Science Advances, 2018, 4, eaap8306.                                                                                                                                               | 10.3 | 38        |
| 10 | Noble gases in 18 Martian meteorites and angrite Northwest Africa 7812—Exposure ages, trapped gases,<br>and a reâ€evaluation of the evidence for solar cosmic rayâ€produced neon in shergottites and other<br>achondrites. Meteoritics and Planetary Science, 2016, 51, 407-428. | 1.6  | 36        |
| 11 | Potassic, high-silica Hadean crust. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6353-6356.                                                                                                                                       | 7.1  | 33        |
| 12 | Strontium and barium isotopes in presolar silicon carbide grains measured with CHILl—two types of X grains. Geochimica Et Cosmochimica Acta, 2018, 221, 109-126.                                                                                                                 | 3.9  | 31        |
| 13 | The production rate of cosmogenic deuterium at the Moon's surface. Earth and Planetary Science Letters, 2017, 474, 76-82.                                                                                                                                                        | 4.4  | 30        |
| 14 | SILICON CARBIDE GRAINS OF TYPE C PROVIDE EVIDENCE FOR THE PRODUCTION OF THE UNSTABLE ISOTOPE <sup>32</sup> Si IN SUPERNOVAE. Astrophysical Journal Letters, 2013, 771, L7.                                                                                                       | 8.3  | 29        |
| 15 | New Constraints on the Major Neutron Source in Low-mass AGB Stars. Astrophysical Journal, 2018, 865, 112.                                                                                                                                                                        | 4.5  | 29        |
| 16 | Simultaneous iron and nickel isotopic analyses of presolar silicon carbide grains. Geochimica Et<br>Cosmochimica Acta, 2018, 221, 87-108.                                                                                                                                        | 3.9  | 27        |
| 17 | Molybdenum Isotopes in Presolar Silicon Carbide Grains: Details of s-process Nucleosynthesis in<br>Parent Stars and Implications for r- and p-processes. Astrophysical Journal, 2019, 877, 101.                                                                                  | 4.5  | 27        |
| 18 | Cosmogenic production rates and recoil loss effects in micrometeorites and interplanetary dust particles. Meteoritics and Planetary Science, 2013, 48, 195-210.                                                                                                                  | 1.6  | 26        |

**RETO TRAPPITSCH** 

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | J-type Carbon Stars: A Dominant Source of <sup>14</sup> N-rich Presolar SiC Grains of Type AB.<br>Astrophysical Journal Letters, 2017, 844, L12.                                                                 | 8.3 | 25        |
| 20 | Effects of Plume Hydrodynamics and Oxidation on the Composition of a Condensing Laser-Induced Plasma. Journal of Physical Chemistry A, 2018, 122, 1584-1591.                                                     | 2.5 | 25        |
| 21 | Presolar Silicon Carbide Grains of Types Y and Z: Their Molybdenum Isotopic Compositions and Stellar<br>Origins. Astrophysical Journal, 2019, 881, 28.                                                           | 4.5 | 23        |
| 22 | High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry.<br>Analytical Chemistry, 2017, 89, 6224-6231.                                                                      | 6.5 | 22        |
| 23 | 60Fe in core-collapse supernovae and prospects for X-ray and gamma-ray detection in supernova remnants. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4287-4310.                                 | 4.4 | 22        |
| 24 | Origin of Large Meteoritic SiC Stardust Grains in Metal-rich AGB Stars. Astrophysical Journal, 2020,<br>898, 96.                                                                                                 | 4.5 | 21        |
| 25 | The neutron capture process in the He shell in core-collapse supernovae: Presolar silicon carbide<br>grains as a diagnostic tool for nuclear astrophysics. Geochimica Et Cosmochimica Acta, 2018, 221,<br>37-46. | 3.9 | 18        |
| 26 | Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae. Astrophysical Journal, 2018,<br>855, 144.                                                                                                 | 4.5 | 15        |
| 27 | He and Ne in individual chromite grains from the regolith breccia Ghubara (L5): Exploring the history of the L chondrite parent body regolith. Meteoritics and Planetary Science, 2014, 49, 576-594.             | 1.6 | 11        |
| 28 | New Resonance Ionization Mass Spectrometry Scheme for Improved Uranium Analysis. Analytical Chemistry, 2018, 90, 10551-10558.                                                                                    | 6.5 | 11        |
| 29 | Simultaneous Isotopic Analysis of U, Pu, and Am in Spent Nuclear Fuel by Resonance Ionization Mass<br>Spectrometry. Analytical Chemistry, 2021, 93, 9505-9512.                                                   | 6.5 | 11        |
| 30 | Iron and nickel isotope compositions of presolar silicon carbide grains from supernovae. Geochimica<br>Et Cosmochimica Acta, 2018, 221, 127-144.                                                                 | 3.9 | 11        |
| 31 | Cosmic ray effects on the isotope composition of hydrogen and noble gases in lunar samples: Insights<br>from Apollo 12018. Earth and Planetary Science Letters, 2020, 550, 116550.                               | 4.4 | 10        |
| 32 | Electronic excitation of uranium atoms sputtered from uranium metal and oxides. Spectrochimica<br>Acta, Part B: Atomic Spectroscopy, 2018, 149, 214-221.                                                         | 2.9 | 8         |
| 33 | PRODUCTION AND RECOIL LOSS OF COSMOGENIC NUCLIDES IN PRESOLAR GRAINS. Astrophysical Journal, 2016, 823, 12.                                                                                                      | 4.5 | 7         |
| 34 | Neon produced by solar cosmic rays in ordinary chondrites. Meteoritics and Planetary Science, 2017, 52, 1155-1172.                                                                                               | 1.6 | 6         |
| 35 | Resonance ionization of titanium: high useful yield and new autoionizing states. Journal of Analytical Atomic Spectrometry, 2018, 33, 1962-1969.                                                                 | 3.0 | 6         |
| 36 | SOLAR COSMIC-RAY INTERACTION WITH PROTOPLANETARY DISKS: PRODUCTION OF SHORT-LIVED<br>RADIONUCLIDES AND AMORPHIZATION OF CRYSTALLINE MATERIAL. Astrophysical Journal, 2015, 805, 5.                               | 4.5 | 5         |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The fall, recovery, classification, and initial characterization of the Hamburg, Michigan H4 chondrite.<br>Meteoritics and Planetary Science, 2020, 55, 2341-2359.                              | 1.6  | 4         |
| 38 | CHILI, a Nanobeam Secondary Neutral Mass Spectrometer with Extraordinary Spatial Resolution,<br>Sensitivity, and Selectivity: First Results. Microscopy and Microanalysis, 2015, 21, 1143-1144. | 0.4  | 0         |
| 39 | Corrigendum to "Diffusion of helium in SiC and implications for retention of cosmogenic He―<br>[Geochim. Cosmochim. acta 192 (2016) 248–257]. Geochimica Et Cosmochimica Acta, 2017, 196, 403.  | 3.9  | 0         |
| 40 | Mixed messages from a nova outburst. Nature Astronomy, 2019, 3, 583-584.                                                                                                                        | 10.1 | 0         |