Keiji Oyoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2836983/publications.pdf

Version: 2024-02-01

	394286	395590
1,121	19	33
citations	h-index	g-index
	=-	205
52	52	925
docs citations	times ranked	citing authors
	citations 52	1,121 19 citations h-index 52 52

#	Article	IF	CITATIONS
1	Formation of Si-Rich Interfaces by Radiation-Induced Diffusion and Microsegregation in CrN/ZrN Nanolayer Coating. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16928-16938.	4.0	21
2	Antibacterial Effect of Au Implantation in Ductile Nanocomposite Multilayer (TiAlSiY)N/CrN Coatings. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48540-48550.	4.0	36
3	Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation. Nuclear Instruments & Methods in Physics Research B, 2019, 447, 38-42.	0.6	10
4	Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings. Journal of Alloys and Compounds, 2016, 679, 155-163.	2.8	137
5	Optical properties of ion-beam-synthesized Au nanoparticles in SiO 2 matrix. Nuclear Instruments & Methods in Physics Research B, 2016, 375, 56-59.	0.6	3
6	Effect of ion implantation on the physical and mechanical properties of Ti-Si-N multifunctional coatings for biomedical applications. Materials and Design, 2016, 110, 821-829.	3.3	70
7	Recrystallization and formation of spheroidal gold particles in amorphous-like AlN–TiB2–TiSi2 coatings after annealing and subsequent implantation. Physics of the Solid State, 2016, 58, 1453-1457.	0.2	O
8	Quantum size effects in the intrinsic nonlinearity of metal plasmonic nanoparticles. , 2016, , .		0
9	The microstructure of a multielement nanostructured (TiZrHfVNbTa)N coating and its resistance to irradiation with Au– ions. Technical Physics Letters, 2015, 41, 1054-1057.	0.2	11
10	Spectral investigation of nonlinear local field effects in Ag nanoparticles. Journal of Applied Physics, 2015, 117, 113101.	1.1	19
11	Influence of implantation of Auâ^' ions on the microstructure and mechanical properties of the nanostructured multielement (TiZrHf VNbTa)N coating. Physics of the Solid State, 2015, 57, 1559-1564.	0.2	24
12	Influence of residual pressure and ion implantation on the structure, elemental composition, and properties of (TiZrAlYNb)N nitrides. Technical Physics, 2015, 60, 1176-1183.	0.2	23
13	Structural features and physico-mechanical properties of AlN-TiB2-TiSi2 amorphous-like coatings. Journal of Superhard Materials, 2015, 37, 310-321.	0.5	4
14	Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization. Physical Review B, 2014, 90, .	1.1	55
15	Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions. Materials Chemistry and Physics, 2014, 147, 1079-1091.	2.0	174
16	Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode. Physics of Metalls and Metallography, 2013, 114, 672-680.	0.3	22
17	The effect of the deposition parameters of nitrides of high-entropy alloys (TiZrHfVNb)N on their structure, composition, mechanical and tribological properties. Journal of Superhard Materials, 2013, 35, 356-368.	0.5	37
18	Formation of superhard Ti-Hf-Si-N/NbN/Al2O3 multilayer coatings for highly effective protection of steel. Technical Physics Letters, 2013, 39, 189-192.	0.2	16

#	Article	IF	Citations
19	The effect of segregation and thermodiffusion on the formation of interfaces in nanostructured (Ti-Hf-Zr-V-Nb)N multielement coatings. Technical Physics Letters, 2013, 39, 280-283.	0.2	17
20	FIB fabrication and irradiation test of stencil masks for heavy-ion patterned implantation for plasmonic application. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 183-187.	0.6	1
21	Development and irradiation performance of stencil masks for heavy-ion patterned implantation. Surface and Coatings Technology, 2011, 206, 806-811.	2.2	0
22	Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy. Applied Surface Science, 2010, 257, 837-841.	3.1	3
23	Migration of Ion-implanted Fe in Silica Glass during Thermal Treatment. Japanese Journal of Applied Physics, 2002, 41, 6145-6148.	0.8	3
24	Study of structure and optical properties of \hat{l}^2 -FeSi2 precipitates formed by ion-implantation of Fe+ in Si(100) and effects of co-implantation of Fe+ and Si+ in amorphous SiO2. Thin Solid Films, 2001, 381, 194-201.	0.8	14
25	Formation of \hat{l}^2 -FeSi2 precipitates at the SiO2/Si interface by Fe+ ion implantation and their structural and optical properties. Thin Solid Films, 2001, 381, 202-208.	0.8	12
26	Structure, optical absorption and electronic states of Zn+ ion implanted and subsequently annealed sol–gel anatase TiO2 films. Nuclear Instruments & Methods in Physics Research B, 2000, 168, 221-228.	0.6	15
27	Study of ion beam induced epitaxial crystallization of SrTiO3. Journal of Applied Physics, 2000, 87, 3450-3456.	1.1	21
28	Effects of ion beam irradiation on the crystallization of Si–C films. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 594-598.	0.6	5
29	Structure of α-Al 2 O 3 (0001) surface and Ti deposited on α-Al 2 O 3 (0001) substrate. Surface Science, 1999, 437, 289-298.	0.8	71
30	Initial stage growth mechanisms of metal adsorbates – Ti, Zr, Fe, Ni, Ge, and Ag – on MgO(001) surface. Surface Science, 1999, 442, 291-299.	0.8	23
31	Visible photoluminescence in thermally annealed Bi implanted SiO2 films. Materials Chemistry and Physics, 1998, 54, 286-288.	2.0	7
32	Surface segregation of implanted ions: Bi, Eu, and Ti at the MgO(100) surface. Applied Surface Science, 1998, 130-132, 534-538.	3.1	3
33	Ca segregation at the MgO(001) surface studied by ion scattering spectroscopy. Surface Science, 1997, 387, 136-141.	0.8	27
34	Transparent, Conducting, Amorphous Oxides: Effect of Chemical Composition on Electrical and Optical Properties of Cadmium Germanates. Journal of the American Ceramic Society, 1997, 80, 22-26.	1.9	16
35	Ion beam induced epitaxial crystallization of SrTiO3. Nuclear Instruments & Methods in Physics Research B, 1997, 121, 184-186.	0.6	3
36	Roughness study of ion-irradiated silica glass surface. Applied Surface Science, 1996, 100-101, 374-377.	3.1	9

#	Article	IF	CITATIONS
37	Effects of ion beam irradiation on the crystallization of Copper films. Materials Research Society Symposia Proceedings, 1995, 396, 195.	0.1	0
38	Paramagnetic resonance of E′-type centers in Si-implanted amorphous SiO2. Si29 hyperfine structure and characteristics of Zeeman resonances. Journal of Non-Crystalline Solids, 1994, 179, 39-50.	1.5	25
39	MODIFICATION OF LARGE AREA GLASS SURFACES BY ION IMPLANTATION. , 1994, , 139-144.		0
40	Ion implantation for large-area optoelectronics on glass substrates. Nuclear Instruments & Methods in Physics Research B, 1993, 74, 317-321.	0.6	6
41	Charging Effect of Ion Implantation on Glass. Japanese Journal of Applied Physics, 1993, 32, 5170-5175.	0.8	3
42	Ion implantation for large-area optoelectronics on glass substrates. , 1993, , 317-321.		0
43	Grainâ€size distribution in ionâ€irradiated amorphous Si films on glass substrates. Journal of Applied Physics, 1992, 71, 648-652.	1.1	4
44	Formation of nanoscale phosphorus colloids in implanted SiO2 glass. Journal of Non-Crystalline Solids, 1992, 142, 287-290.	1.5	41
45	Crystal Nucleation in Amorphous Si Films on Glass Substrate by Si+ Ion Implantation. Materials Research Society Symposia Proceedings, 1991, 230, 171.	0.1	2
46	Smoothing of Silica Glass Surfaces by Ion Implantation. Japanese Journal of Applied Physics, 1991, 30, 1854-1859.	0.8	27
47	Effects of coimplantation of silicon and nitrogen on structural defects and Si-N bond formation in silica glass. Physical Review B, 1991, 43, 11966-11970.	1.1	25
48	Crystallization of amorphous Si on a glass substrate through nucleation by Si+ion implantation. Applied Physics Letters, 1990, 57, 1970-1972.	1,5	14
49	Formation of buried oxynitride layers in silica glass by ion implantation. Journal of Applied Physics, 1990, 68, 3653-3660.	1.1	39
50	Formation of Buried Oxynitride Layer into Silica Glass using Ion Beam. Materials Research Society Symposia Proceedings, 1989, 157, 149.	0.1	2
51	The Dependence of Field Effect Mobilities on Substrate Temperature for Amorphous Silicon Deposition for Amorphous Silicon Thin Film Transistors. Japanese Journal of Applied Physics, 1988, 27, L2010-L2012.	0.8	10
52	High Dose Implantation of Nitrogen and Phosphor into Silica Glass. Materials Research Society Symposia Proceedings, 1988, 128, 519.	0.1	11