
Michael P Stone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2836562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of the 8,9-epoxide of the mycotoxin aflatoxin B1: the ultimate carcinogenic species. Journal of the American Chemical Society, 1988, 110, 7929-7931.	6.6	251
2	DNA Interchain Cross-Links Formed by Acrolein and Crotonaldehyde. Journal of the American Chemical Society, 2003, 125, 50-61.	6.6	181
3	Interstrand DNA Cross-Links Induced by α,β-Unsaturated Aldehydes Derived from Lipid Peroxidation and Environmental Sources. Accounts of Chemical Research, 2008, 41, 793-804.	7.6	161
4	Chemistry and Biology of DNA Containing 1, <i>N</i> ² -Deoxyguanosine Adducts of the α,β-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and 4-Hydroxynonenal. Chemical Research in Toxicology, 2009, 22, 759-778.	1.7	155
5	Intercalation of aflatoxin B1 in two oligodeoxynucleotide adducts: comparative proton NMR analysis of d(ATCAFBGAT).cntdot.d(ATCGAT) and d(ATAFBGCAT)2. Biochemistry, 1990, 29, 10438-10448.	1.2	98
6	DNA conformation mediates aflatoxin B1-DNA binding and the formation of guanine N7 adducts by aflatoxin B1 8,9-exo-epoxide. Chemical Research in Toxicology, 1993, 6, 64-68.	1.7	73
7	Adduction of the HumanN-rasCodon 61 Sequence with (â [°])-(7S,8R,9R,10S)-7,8-Dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene:Â Structural Refinement of the Intercalated SRSR(61,2) (â [°])-(7S,8R,9S,10R)-N6-[10-(7,8,9,10-Tetrahydrobenzo[a]pyrenyl)]-2â€ [°] -deoxyadenosyl Adduct from1H NMRâ€.	1.2	73
8	Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5 R -thymine glycol lesion and structure of the cis -(5 R ,6 S) thymine glycol epimer in the 5′-GTgG-3′ sequence: destabilization of two base pairs at the lesion site. Nucleic Acids Research, 2010, 38, 428-440.	6.5	73
9	A postoligomerization synthesis of oligodeoxynucleotides containing polycyclic aromatic hydrocarbon adducts at the N6 position of deoxyadenosine Journal of the American Chemical Society, 1992, 114, 5480-5481.	6.6	68
10	An Intercalated and Thermally Stable FAPY Adduct of Aflatoxin B1in a DNA Duplex:Â Structural Refinement from1H NMRâ€. Biochemistry, 1998, 37, 4374-4387.	1.2	65
11	Base-Displaced Intercalated Structure of the Food Mutagen 2-Amino-3-methylimidazo[4,5-f]quinoline in the Recognition Sequence of theNarl Restriction Enzyme, a Hotspot for â^2 bp Deletions. Journal of the American Chemical Society, 2006, 128, 10085-10095.	6.6	62
12	Unraveling the Aflatoxinâ^'FAPY Conundrum:Â Structural Basis for Differential Replicative Processing of Isomeric Forms of the Formamidopyrimidine-Type DNA Adduct of Aflatoxin B1. Journal of the American Chemical Society, 2006, 128, 15188-15199.	6.6	62
13	Proton NMR of an oligodeoxynucleotide containing a propanodeoxyguanosine adduct positioned in a (CG)3 frameshift hotspot of Salmonella typhimurium hisD3052: Hoogsteen base-pairing at pH 5.8. Chemical Research in Toxicology, 1993, 6, 825-836.	1.7	60
14	Stereospecific Formation of Interstrand Carbinolamine DNA Cross-Links by Crotonaldehyde- and Acetaldehyde-Derived α-CH3-γ-OH-1,N2-Propano-2â€~-deoxyguanosine Adducts in the 5â€~-CpG-3â€~ Sequence. Chemical Research in Toxicology, 2006, 19, 195-208.	1.7	57
15	Structural Studies of an Oligodeoxynucleotide Containing a Trimethylene Interstrand Cross-Link in a 5â€⁻-(CpC) Motif: Model of a Malondialdehyde Cross-Link. Journal of the American Chemical Society, 2001, 123, 1730-1739.	6.6	56
16	Detection of an Interchain Carbinolamine Cross-Link Formed in a CpG Sequence by the Acrolein DNA Adduct γ-OH-1,NÂ2-Propano-2'-deoxyguanosine. Journal of the American Chemical Society, 2002, 124, 9324-9325.	6.6	47
17	Molecular basis of aflatoxin-induced mutagenesis—role of the aflatoxin B1-formamidopyrimidine adduct. Carcinogenesis, 2014, 35, 1461-1468.	1.3	47
18	Error-prone Replication Bypass of the Primary Aflatoxin B1 DNA Adduct, AFB1-N7-Gua. Journal of Biological Chemistry, 2014, 289, 18497-18506.	1.6	44

#	Article	IF	CITATIONS
19	NEIL1 protects against aflatoxin-induced hepatocellular carcinoma in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4207-4212.	3.3	44
20	Multiple Conformations of an Intercalated (â^')-(7S,8R,9S,10R)-N6-[10-(7,8,9,10-Tetrahydrobenzo[a]pyrenyl)]-2â€~-deoxyadenosyl Adduct in the N-ras Codon 61 Sequence. Biochemistry, 1998, 37, 16516-16528.	1.2	43
21	DNA crossâ€link induced by <i>trans</i> â€4â€hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 625-634.	0.9	43
22	Structure of (5′ <i>S</i>)-8,5′-Cyclo-2′-deoxyguanosine in DNA. Journal of the American Chemical Society, 2011, 133, 20357-20368.	6.6	43
23	Alteration of the aflatoxin cyclopentenone ring to a .deltalactone reduces intercalation with DNA and decreases formation of guanine N7 adducts by aflatoxin epoxides. Chemical Research in Toxicology, 1990, 3, 254-261.	1.7	42
24	Chemistry and Structural Biology of DNA Damage and Biological Consequences. Chemistry and Biodiversity, 2011, 8, 1571-1615.	1.0	42
25	Spectroscopic Characterization of Interstrand Carbinolamine Cross-Links Formed in the 5â€~-CpG-3â€~ Sequence by the Acrolein-Derived γ-OH-1,N 2-Propano-2â€~-deoxyguanosine DNA Adduct. Journal of the American Chemical Society, 2005, 127, 17686-17696.	6.6	41
26	NMR Determination of the Conformation of a Trimethylene Interstrand Cross-Link in an Oligodeoxynucleotide Duplex Containing a 5â€~-d(GpC) Motif. Journal of the American Chemical Society, 2003, 125, 62-72.	6.6	38
27	Major Groove (S)-α-(N6-Adenyl)styrene Oxide Adducts in an Oligodeoxynucleotide Containing the HumanN-rasCodon 61 Sequence:Â Conformations of the S(61,2) and S(61,3) Sequence Isomers from1H NMRâ€. Biochemistry, 1996, 35, 7316-7329.	1.2	37
28	DNA Abasic Lesions in a Different Light:Â Solution Structure of an Endogenous Topoisomerase II Poisonâ€. Biochemistry, 1999, 38, 15500-15507.	1.2	36
29	Inherent Stereospecificity in the Reaction of Aflatoxin B ₁ 8,9-Epoxide with Deoxyguanosine and Efficiency of DNA Catalysis. Chemical Research in Toxicology, 2009, 22, 913-917.	1.7	35
30	Selective Incision of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î±</mml:mi><mml:mi>N</mml:mi><mml:mn mathvariant="bold">5-Methyl-Formamidopyrimidine</mml:mn </mml:math </mml:math 	0.8	35
31	Anomer by <i>Escherichia coli</i> Endonuclease IV. Journal of Nucleic Acids, 2010, 2010, 1-10. Major Groove (R)alpha(N6-Adenyl)styrene Oxide Adducts in an Oligodeoxynucleotide Containing the Human n-ras Codon 61 Sequence: Conformations of the R(61,2) and R(61,3) Sequence Isomers from 1H NMR. Biochemistry, 1995, 34, 14021-14036.	1.2	33
32	Structure of an Oligodeoxynucleotide Containing a 1,N2-Propanodeoxyguanosine Adduct Positioned in a Palindrome Derived from the Salmonella typhimurium hisD3052 Gene:  Hoogsteen Pairing at pH 5.2. Chemical Research in Toxicology, 2002, 15, 127-139.	1.7	33
33	Solution Structure of an Oligodeoxynucleotide Containing the Malondialdehyde Deoxyguanosine AdductN2-(3-Oxo-1-propenyl)-dG (Ring-Opened M1G) Positioned in a (CpG)3Frameshift Hotspot of theSalmonella typhimurium hisD3052Geneâ€. Biochemistry, 1999, 38, 13491-13501.	1.2	31
34	Structure of a Duplex Oligodeoxynucleotide Containing Propanodeoxyguanosine Opposite a Two-Base Deletion in the (CpG)3 Frame-Shift Hotspot of Salmonella typhimurium hisD3052 Determined by 1H NMR and Restrained Molecular Dynamics. Biochemistry, 1995, 34, 50-64.	1.2	30
35	Interconversion of the cis-5R,6S- and trans-5R,6R-Thymine Glycol Lesions in Duplex DNA. Journal of the American Chemical Society, 2008, 130, 11701-11710.	6.6	30
36	Bypass of Aflatoxin B ₁ Adducts by the <i>Sulfolobus solfataricus</i> DNA Polymerase IV. Journal of the American Chemical Society, 2011, 133, 12556-12568.	6.6	30

#	Article	IF	CITATIONS
37	Site-Specific Synthesis and Characterization of Oligonucleotides Containing an <i>N</i> ⁶ -(2-Deoxy- <scp>d</scp> - <i>erythro</i> -pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-< Lesion, the Ring-Opened Product from N7-Methylation of Deoxyguanosine. Chemical Research in Toxicology, 2008, 21, 2324-2333.	∶i>N-n 1.7	nethylforman 29
38	Synthesis of Oligonucleotides Containing the Alkali-Labile Pyrimidopurinone Adduct, M1G. Chemical Research in Toxicology, 2000, 13, 90-95.	1.7	28
39	Structural Perturbations Induced by the α-Anomer of the Aflatoxin B ₁ Formamidopyrimidine Adduct in Duplex and Single-Strand DNA. Journal of the American Chemical Society, 2009, 131, 16096-16107.	6.6	25
40	Carcinogen-Nucleic Acid Interactions: Equilibrium Binding Studies of Aflatoxins B1and B2with DNA and the Oligodeoxynucleotide d(ATGCAT)2. Journal of Biomolecular Structure and Dynamics, 1988, 5, 1025-1041.	2.0	24
41	1H NMR characterization of a duplex oligodeoxynucleotide containing propanodeoxyguanosine opposite a two-base deletion in the (CpG)3 frameshift hotspot of Salmonella typhimurium hisD3052. Chemical Research in Toxicology, 1994, 7, 319-328.	1.7	22
42	In Vitro Bypass of Malondialdehydeâ^'Deoxyguanosine Adducts:Â Differential Base Selection during Extension by the Klenow Fragment of DNA Polymerase I Is the Critical Determinant of Replication Outcomeâ€. Biochemistry, 2004, 43, 11828-11835.	1.2	22
43	Insertion of dNTPs Opposite the 1, <i>N</i> ² -Propanodeoxyguanosine Adduct by <i>Sulfolobus solfataricus</i> P2 DNA Polymerase IV. Biochemistry, 2008, 47, 7322-7334.	1.2	22
44	The <i>cis</i> -(5 <i>R</i> ,6 <i>S</i>)-Thymine Glycol Lesion Occupies the Wobble Position When Mismatched with Deoxyguanosine in DNA. Biochemistry, 2009, 48, 9722-9733.	1.2	22
45	DNA polymerase ζ limits chromosomal damage and promotes cell survival following aflatoxin exposure. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13774-13779.	3.3	22
46	Structural Refinement of the 8,9-Dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B1 Adduct in a 5â€~-CpAFBG-3â€~ Sequence. Chemical Research in Toxicology, 2002, 15, 638-647.	1.7	21
47	Refined Structure of the Doubly Intercalated d(TATAFBGCATA)2Aflatoxin B1Adduct. Chemical Research in Toxicology, 1998, 11, 873-881.	1.7	20
48	Intercalation of the (1S,2R,3S,4R)-N6- [1-(1,2,3,4-Tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2â€~-deoxyadenosyl Adduct in an Oligodeoxynucleotide Containing the HumanN-rasCodon 61 Sequenceâ€. Biochemistry, 1999, 38, 16045-16057.	1.2	20
49	Orientation of the Crotonaldehyde-Derived N2-[3-Oxo-1(S)-methyl-propyl]-dG DNA Adduct Hinders Interstrand Cross-Link Formation in the 5â€~-CpG-3â€~ Sequence. Chemical Research in Toxicology, 2006, 19, 1019-1029.	1.7	20
50	Recognition of DNA adducts by edited and unedited forms of DNA glycosylase NEIL1. DNA Repair, 2020, 85, 102741.	1.3	20
51	The Stereochemistry of trans-4-Hydroxynonenal-Derived Exocyclic 1,N2-2′-Deoxyguanosine Adducts Modulates Formation of Interstrand Cross-Links in the 5′-CpG-3′ Sequence. Biochemistry, 2008, 47, 11457-11472.	1.2	19
52	Stereochemistry Modulates the Stability of Reduced Interstrand Cross-Links Arising fromR- andS-α-CH3-γ-OH-1,N2-Propano-2'-deoxyguanosine in the 5'-CpG-3' DNA Sequenceâ€. Biochemistry, 200 2608-2621.	071. 2 6,	18
53	Rearrangement of the (6 <i>S</i> ,8 <i>R</i> ,11 <i>S</i>) and (6 <i>R</i> ,8 <i>S</i> ,11 <i>R</i>) Exocyclic 1, <i>N</i> ² -Deoxyguanosine Adducts of <i>trans</i> -4-Hydroxynonenal to <i>N</i> ² -Deoxyguanosine Cyclic Hemiacetal Adducts When Placed Complementary to Cytosine in Duplex DNA. Journal of the American Chemical Society. 2008, 130, 10898-10906.	6.6	18
54	Intercalation of the (â^')-(1R,2S,3R,4S)-N6-[1-Benz[a]anthracenyl]-2â€ [~] -deoxyadenosyl Adduct in an Oligodeoxynucleotide Containing the Human N-ras Codon 61 Sequence. Biochemistry, 1999, 38, 2969-2981.	1.2	17

#	Article	IF	CITATIONS
55	The Exocyclic 1,N2-Deoxyguanosine Pyrimidopurinone M1G Is a Chemically Stable DNA Adduct When Placed Opposite a Two-Base Deletion in the (CpG)3 Frameshift Hotspot of the Salmonella typhimurium hisD3052 Gene. Biochemistry, 2001, 40, 15638-15649.	1.2	17
56	Stereospecific Structural Perturbations Arising from Adenine N6 Butadiene Triol Adducts in Duplex DNA. Chemical Research in Toxicology, 2004, 17, 1007-1019.	1.7	17
57	Intercalation of the (1R,2S,3R,4S)-N6-[1-(1,2,3,4-) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 667 Td (Tetrahy Sequence: DNA Sequence Effectsâ€. Biochemistry, 2001, 40, 6743-6755.	dro-2,3,4-t 1.2	trihydroxybe 16
58	Structure of a Site Specific Major Groove (2S,3S)-N6-(2,3,4-Trihydroxybutyl)-2â€~-deoxyadenosyl DNA Adduct of Butadiene Diol Epoxide. Chemical Research in Toxicology, 2004, 17, 717-730.	1.7	16
59	Thermal stabilization of the DNA duplex by adducts of aflatoxin B1. Biopolymers, 2002, 65, 190-201.	1.2	15
60	Structure of the 1,N2-Etheno-2′-Deoxyguanosine Adduct in Duplex DNA at pH 8.6. Chemical Research in Toxicology, 2007, 20, 1601-1611.	1.7	15
61	Structure of the 1,N2-Ethenodeoxyguanosine Adduct Opposite Cytosine in Duplex DNA: Hoogsteen Base Pairing at pH 5.2. Chemical Research in Toxicology, 2008, 21, 1795-1805.	1.7	15
62	Conformational Interconversion of the trans-4-Hydroxynonenal-Derived (6S,8R,11S) 1,N2-Deoxyguanosine Adduct When Mismatched with Deoxyadenosine in DNA. Chemical Research in Toxicology, 2009, 22, 187-200.	1.7	15
63	Structural Basis for Error-Free Bypass of the 5- <i>N</i> -Methylformamidopyrimidine-dG Lesion by Human DNA Polymerase η and <i>Sulfolobus solfataricus</i> P2 Polymerase IV. Journal of the American Chemical Society, 2015, 137, 7011-7014.	6.6	15
64	The Nonmutagenic (R)- and (S)-β-(N6-Adenyl)styrene Oxide Adducts Are Oriented in the Major Groove and Show Little Perturbation to DNA Structureâ€. Biochemistry, 2001, 40, 9780-9791.	1.2	13
65	Wobble dC·dA Pairing 5â€~ to the Cationic Guanine N7 8,9-Dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1Adduct: Implications for Nontargeted AFB1Mutagenesisâ€. Biochemistry, 2003, 42, 7023-7034.	1.2	13
66	Stereospecific Formation of the (<i>R</i>)-Î ³ -Hydroxytrimethylene Interstrand <i>N</i> ² -dG: <i>N</i> ² -dG Cross-Link Arising from the Î ³ -OH-1, <i>N</i> ² -Propano-2â€ ² -deoxyguanosine Adduct in the 5â€ ² -CpG-3â€ ² DNA Sequence. Jour the American Chemical Society, 2009, 131, 8416-8424.	nal ôf	13
67	Processing of N-substituted formamidopyrimidine DNA adducts by DNA glycosylases NEIL1 and NEIL3. DNA Repair, 2019, 73, 49-54.	1.3	13
68	Structure of the 1,N2-Propanodeoxyguanosine Adduct in a Three-Base DNA Hairpin Loop Derived from a Palindrome in the Salmonella typhimurium hisD3052 Gene. Chemical Research in Toxicology, 2002, 15, 140-152.	1.7	12
69	Mispairing of the 8,9-Dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B1 Adduct with Deoxyadenosine Results in Extrusion of the Mismatched dA toward the Major Groove. Biochemistry, 2002, 41, 5462-5472.	1.2	12
70	Formation of a <i>N</i> ² -dG: <i>N</i> ² -dG Carbinolamine DNA Cross-link by the <i>trans</i> -4-Hydroxynonenal-Derived (6 <i>S</i> ,8 <i>R</i> ,11 <i>S</i>) 1, <i>N</i> ² -dG Adduct. Journal of the American Chemical Society, 2011, 133, 16101-16110.	6.6	12
71	DNA Sequence Modulates Geometrical Isomerism of the <i>trans</i> -8,9-Dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy Aflatoxin B ₁ Adduct. Chemical Research in Toxicology, 2015, 28, 225-237.	1.7	12
72	Site-specific targeting of aflatoxin adduction directed by triple helix formation in the major groove of oligodeoxyribonucleotides. Nucleic Acids Research, 1998, 26, 1070-1075.	6.5	11

#	Article	IF	CITATIONS
73	Replication of a Site-Specific trans-8,9-Dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 Adduct by the Exonuclease Deficient Klenow Fragment of DNA Polymerase I. Chemical Research in Toxicology, 2000, 13, 1158-1164.	1.7	11
74	Structure of a Stable Interstrand DNA Cross-Link Involving a β- <i>N</i> -Glycosyl Linkage Between an <i>N</i> ⁶ -dA Amino Group and an Abasic Site. Biochemistry, 2021, 60, 41-52.	1.2	11
75	Differential Base Stacking Interactions Induced by Trimethylene Interstrand DNA Cross-Links in the 5′-CpG-3′ and 5′-GpC-3′ Sequence Contexts. Chemical Research in Toxicology, 2009, 22, 1810-1816.	1.7	10
76	Structures of Exocyclic <i>R,R</i> - and <i>S,S</i> - <i>N</i> ⁶ , <i>N</i> ⁶ -(2,3-Dihydroxybutan-1,4-diyl)-2′-Deoxyadenosine Adducts Induced by 1,2,3,4-Diepoxybutane. Chemical Research in Toxicology, 2014, 27, 805-817.	1.7	10
77	Bulge Migration of the Malondialdehdye OPdG DNA Adduct When Placed Opposite a Two-Base Deletion in the (CpG) ₃ Frameshift Hotspot of the Salmonella typhimurium <i>hisD3052</i> Gene. Chemical Research in Toxicology, 2007, 20, 1200-1210.	1.7	9
78	Characterization of rare NEIL1 variants found in East Asian populations. DNA Repair, 2019, 79, 32-39.	1.3	9
79	Site-Specific Synthesis of Aflatoxin B1 Adducts within an Oligodeoxyribonucleotide Containing the Human p53 Codon 249 Sequence. Chemical Research in Toxicology, 1999, 12, 707-714.	1.7	8
80	Base-Displaced Intercalated Structure of the <i>N</i> -(2′-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct. Chemical Research in Toxicology, 2015, 28, 2253-2266.	1.7	8
81	Influence of the R(61,2)- and S(61,2)-α-(N6-Adenyl)styrene Oxide Adducts on the A·C Mismatched Base Pair in an Oligodeoxynucleotide Containing the Human N-ras Codon 61. Biochemistry, 1999, 38, 8635-8646.	1.2	7
82	Base-Displaced Intercalated Conformation of the 2-Amino-3-methylimidazo[4,5- <i>f</i>]quinoline <i>N</i> ² -dG DNA Adduct Positioned at the Nonreiterated G ¹ in the <i>Nar</i> I Restriction Site. Chemical Research in Toxicology, 2015, 28, 1455-1468.	1.7	7
83	DNA Sequence Modulates the Efficiency of NEIL1-Catalyzed Excision of the Aflatoxin B ₁ -Induced Formamidopyrimidine Guanine Adduct. Chemical Research in Toxicology, 2021, 34, 901-911.	1.7	7
84	Mechanism of Errorâ€Free Bypass of the Environmental Carcinogen <i>N</i> â€{2â€2â€Deoxyguanosinâ€8â€yl)â€3â€aminobenzanthrone Adduct by Human DNA Polymerase Ε. (2016, 17, 2033-2037.	Cheen Bio(Chæm,
85	Structure of the Malondialdehyde Deoxyguanosine Adduct M1G When Placed Opposite a Two-Base Deletion in the (CpG)3 Frameshift Hotspot of the Salmonella Typhimurium hisd3052 Gene. Advances in Experimental Medicine and Biology, 2001, 500, 513-516.	0.8	6
86	Sequence and Stereospecific Consequences of Major Groove α-(N6-Adenyl)-Styrene Oxide Adducts in an Oligodeoxynucleotide Containing the HumanN-rasCodon 61 Sequence. Magnetic Resonance in Chemistry, 1996, 34, S105-S114.	1.1	5
87	γ-Hydroxy-1,N2-propano-2′-deoxyguanosine DNA Adduct Conjugates the N-Terminal Amine of the KWKK Peptide via a Carbinolamine Linkage. Chemical Research in Toxicology, 2011, 24, 1123-1133.	1.7	5
88	Major Groove Orientation of the (2S)-N6-(2-Hydroxy-3-buten-1-yl)-2′-deoxyadenosine DNA Adduct Induced by 1,2-Epoxy-3-butene. Chemical Research in Toxicology, 2014, 27, 1675-1686.	1.7	5
89	Aflatoxin-DNA Binding and the Characterization of Aflatoxin B1-Oligodeoxynucleotide Adducts by 1H NMR Spectroscopy. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1990, , 451-480.	0.2	5
90	THIONO COMPOUNDS. 9. USE OF SPECTRA TO STUDY INTERMEDIATES IN THE OXIDATION OF THIONO PHOSPHORUS, COMPOUNDS. Phosphorous and Sulfur and the Related Elements, 1988, 35, 159-172.	0.2	3

#	Article	IF	CITATIONS
91	Chemistry and Biology of Aflatoxin-DNA Adducts. ACS Symposium Series, 2011, , 147-166.	0.5	3
92	THIONO COMPOUNDS. 10. STRUCTURES AND REACTIONS OF INTERMEDIATES FROM THE OXIDATION OF PHOSPHOROTHIOATES ^{1,2} . Phosphorus, Sulfur and Silicon and the Related Elements, 1989, 44, 39-52.	0.8	2
93	Configurational and Conformational Equilibria of N6-(2-Deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dG) Lesion in DNA. Chemical Research in Toxicology, 2018, 31, 924-935.	1.7	2
94	Structural Consequences of Epimerization of Thymine Glycol Lesions in Duplex DNA: Implications for DNA Repair. ACS Symposium Series, 2010, , 11-28.	0.5	0
95	Molecular mechanisms underlying aflatoxinâ€induced mutagenesis. FASEB Journal, 2013, 27, lb78.	0.2	0