Morten Hammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2836437/publications.pdf

Version: 2024-02-01

516215 500791 37 808 16 28 h-index citations g-index papers 38 38 38 605 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CO2 transport: Data and models – A review. Applied Energy, 2016, 169, 499-523.	5.1	106
2	Thermodynamic Modeling with Equations of State: Present Challenges with Established Methods. Industrial & Engineering Chemistry Research, 2017, 56, 3503-3515.	1.8	95
3	Pipeline transport of CO2 mixtures: Models for transient simulation. International Journal of Greenhouse Gas Control, 2013, 15, 174-185.	2.3	65
4	Depressurization of CO2-rich mixtures in pipes: Two-phase flow modelling and comparison with experiments. International Journal of Greenhouse Gas Control, 2015, 37, 398-411.	2.3	50
5	Fracture propagation control in CO 2 pipelines: Validation of a coupled fluid–structure model. Engineering Structures, 2016, 123, 192-212.	2.6	39
6	The spinodal of single- and multi-component fluids and its role in the development of modern equations of state. Fluid Phase Equilibria, 2017, 436, 98-112.	1.4	39
7	Thermodynamic models to accurately describe the <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>P</mml:mi><mml:mi>V</mml:mi><mml:mi>T</mml:mi>T<mml:mi>x<td>nml:mi><n< td=""><td>nmi:mi>y</td></n<></td></mml:mi></mml:mrow></mml:math>	nml:mi> <n< td=""><td>nmi:mi>y</td></n<>	nmi:mi>y
8	Method Using a Density–Energy State Function with a Reference Equation of State for Fluid-Dynamics Simulation of Vapor–Liquid–Solid Carbon Dioxide. Industrial & Dioxide Engineering Chemistry Research, 2013, 52, 9965-9978.	1.8	33
9	Well integrity for CO2 injection from ships: Simulation of the effect of flow and material parameters on thermal stresses. International Journal of Greenhouse Gas Control, 2017, 62, 130-141.	2.3	24
10	Equation of state and force fields for Feynman–Hibbs-corrected Mie fluids. I. Application to pure helium, neon, hydrogen, and deuterium. Journal of Chemical Physics, 2019, 151, .	1.2	23
11	Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions. Energy Procedia, 2014, 63, 2448-2457.	1.8	22
12	Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions. Energy, 2020, 211, 118560.	4.5	22
13	Thermodynamic properties of the 3D Lennard-Jones/spline model. Molecular Physics, 2019, 117, 3754-3769.	0.8	21
14	Time Efficient Solution of Phase Equilibria in Dynamic and Distributed Systems with Differential Algebraic Equation Solvers. Industrial & Engineering Chemistry Research, 2013, 52, 2130-2140.	1.8	19
15	Equation of state and force fields for Feynman–Hibbs-corrected Mie fluids. II. Application to mixtures of helium, neon, hydrogen, and deuterium. Journal of Chemical Physics, 2020, 152, 074507.	1.2	19
16	CO2 Capture from Off-shore Gas Turbines Using Supersonic Gas Separation. Energy Procedia, 2014, 63, 243-252.	1.8	18
17	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><td>sub3:6/mm</td><td>l:mrow></td></mml:msub></mml:mrow>	sub 3 :6/mm	l:mrow>
18	245-260 CO2 Pipeline Integrity: Comparison of a Coupled Fluid-structure Model and Uncoupled Two-curve Methods. Energy Procedia, 2014, 51, 382-391.	1.8	15

#	Article	IF	CITATIONS
19	A method for simulating two-phase pipe flow with real equations of state. Computers and Fluids, 2014, 100, 45-58.	1.3	15
20	Key findings and recommendations from the IMPACTS project. International Journal of Greenhouse Gas Control, 2016, 54, 588-598.	2.3	15
21	CO2 Pipeline Integrity: A Coupled Fluid-structure Model Using a Reference Equation of State for CO2. Energy Procedia, 2013, 37, 3113-3122.	1.8	14
22	Predicting triggering and consequence of delayed LNG RPT. Journal of Loss Prevention in the Process Industries, 2018, 55, 124-133.	1.7	14
23	Accurate quantum-corrected cubic equations of state for helium, neon, hydrogen, deuterium and their mixtures. Fluid Phase Equilibria, 2020, 524, 112790.	1.4	14
24	IMPACTS: Economic Trade-offs for CO2 Impurity Specification. Energy Procedia, 2014, 63, 7379-7388.	1.8	10
25	Need for experiments on shut-ins and depressurizations in CO2 injection wells. Energy Procedia, 2014, 63, 3022-3029.	1.8	10
26	Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme. Journal of Computational Physics, 2017, 348, 1-22.	1.9	8
27	A combined fluid-dynamic and thermodynamic model to predict the onset of rapid phase transitions in LNG spills. Journal of Loss Prevention in the Process Industries, 2021, 69, 104354.	1.7	7
28	Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid. Journal of Chemical Physics, 2022, 156, 104504.	1.2	6
29	Choice of reference, influence of non-additivity, and present challenges in thermodynamic perturbation theory for mixtures. Journal of Chemical Physics, 2020, 152, 134106.	1.2	5
30	Depressurization of CO2-N2 and CO2-He in a pipe: Experiments and modelling of pressure and temperature dynamics. International Journal of Greenhouse Gas Control, 2021, 109, 103361.	2.3	5
31	Upward and downward two-phase flow of CO2 in a pipe: Comparison between experimental data and model predictions. International Journal of Multiphase Flow, 2021, 138, 103590.	1.6	4
32	HLLC-type methods for compressible two-phase flow in ducts with discontinuous area changes. Computers and Fluids, 2021, 227, 105023.	1.3	4
33	Equation of state for confined fluids. Journal of Chemical Physics, 2022, 156, .	1.2	4
34	Thermodynamic Model Evaluations for Hydrogen Pipeline Transportation. , 2022, , .		3
35	Towards a thorough Validation of Simulation Tools for CO2 Pipeline Transport. Energy Procedia, 2017, 114, 6730-6740.	1.8	2
36	Simulation of a Full-Scale CO2 Fracture Propagation Test. , 2018, , .		1

ARTICLE IF CITATIONS

37 Coupled CO2â€wellâ€reservoir simulation using a partitioned approach: effect of reservoir properties on well dynamics., 2021, 11, 103-127.

O