
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2836352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulating redox metabolism to improve isobutanol production in Shimwellia blattae. Biotechnology for Biofuels, 2021, 14, 8.	6.2	15
2	Effect of additives on the enzymatic hydrolysis of pre-treated wheat straw. Brazilian Journal of Chemical Engineering, 2021, 38, 241.	0.7	7
3	Multi-feedstock lignocellulosic biorefineries based on biological processes: An overview. Industrial Crops and Products, 2021, 172, 114062.	2.5	20
4	Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR: An overview. Biochemical Engineering Journal, 2020, 164, 107803.	1.8	16
5	Enzymatic hydrolysis of several pretreated lignocellulosic biomasses: Fractal kinetic modelling. Bioresource Technology, 2020, 318, 124050.	4.8	16
6	Production of MCM-41 Nanoparticles with Control of Particle Size and Structural Properties: Optimizing Operational Conditions during Scale-Up. International Journal of Molecular Sciences, 2020, 21, 7899.	1.8	26
7	Kinetic Modeling of Dihydroxyacetone Production from Glycerol by Gluconobacter oxydans ATCC 621 Resting Cells: Effect of Fluid Dynamics Conditions. Catalysts, 2020, 10, 101.	1.6	11
8	Synthesis of Ibuprofen Monoglyceride in Solventless Medium with Novozym®435: Kinetic Analysis. Catalysts, 2020, 10, 76.	1.6	7
9	Thermal and operational deactivation of Aspergillus fumigatus β-glucosidase in ethanol/water pretreated wheat straw enzymatic hydrolysis. Journal of Biotechnology, 2019, 292, 32-38.	1.9	6
10	Effects of fluid-dynamic conditions in Shimwellia blattae (p424lbPSO) cultures in stirred tank bioreactors: Hydrodynamic stress and change of metabolic routes by oxygen availability. Biochemical Engineering Journal, 2019, 149, 107238.	1.8	9
11	Influence of oxygen transfer and uptake rates on dihydroxyacetone production from glycerol by Cluconobacter oxydans in resting cells operation. Biochemical Engineering Journal, 2019, 147, 20-28.	1.8	14
12	Orange peel waste upstream integrated processing to terpenes, phenolics, pectin and monosaccharides: Optimization approaches. Industrial Crops and Products, 2019, 134, 370-381.	2.5	49
13	Dihydroxyacetone production from glycerol using Gluconobacter oxydans : Study of medium composition and operational conditions in shaken flasks. Biotechnology Progress, 2019, 35, e2803.	1.3	11
14	Liquor re-use strategy in lignocellulosic biomass fractionation with ethanol-water mixtures. Bioresource Technology, 2019, 280, 396-403.	4.8	13
15	Kinetic Modeling of the Isobutanol Production from Glucose Using <i>Shimwellia blattae</i> (p424lbPSO) Strain: Effect of Initial Substrate Concentration. Industrial & Engineering Chemistry Research, 2019, 58, 1502-1512.	1.8	4
16	Carbon flux distribution in the metabolism of <i>Shimwellia blattae</i> (p424lbPSO) for isobutanol production from glucose as function of oxygen availability. Journal of Chemical Technology and Biotechnology, 2019, 94, 850-858.	1.6	6
17	Behavior of several <i>pseudomonas putida</i> strains growth under different agitation and oxygen supply conditions. Biotechnology Progress, 2018, 34, 900-909.	1.3	8
18	Wheat straw fractionation by ethanol-water mixture: Optimization of operating conditions and comparison with diluted sulfuric acid pre-treatment. Bioresource Technology, 2018, 256, 178-186.	4.8	25

#	Article	IF	CITATIONS
19	Isobutanol production by a recombinant biocatalyst Shimwellia blattae (p424lbPSO): Study of the operational conditions. Biochemical Engineering Journal, 2018, 133, 21-27.	1.8	11
20	Valorization of Cynara Cardunculus crops by ethanol-water treatment: Optimization of operating conditions. Industrial Crops and Products, 2018, 124, 856-862.	2.5	20
21	Resting cells isobutanol production byShimwellia blattae(p424lbPSO): Influence of growth culture conditions. Biotechnology Progress, 2018, 34, 1073-1080.	1.3	8
22	Pre-treatment of corn stover, Cynara cardunculus L. stems and wheat straw by ethanol-water and diluted sulfuric acid: Comparison under different energy input conditions. Bioresource Technology, 2018, 270, 449-456.	4.8	21
23	Kinetic modeling of cellobiose by a β-glucosidase from Aspergillus fumigatus. Chemical Engineering Research and Design, 2018, 136, 502-512.	2.7	13
24	Physico-chemical kinetic modelling of hydrolysis of a steam-explosion pre-treated corn stover: A two-step approach. Bioresource Technology, 2018, 268, 592-598.	4.8	11
25	Influence of fluid dynamic conditions on 1,3â€propanediol production from glycerol by <i>Shimwellia blattae</i> : carbon flux and cell response. Journal of Chemical Technology and Biotechnology, 2017, 92, 2050-2059.	1.6	5
26	Study of the enzymatic activity inhibition on the saccharification of acid pretreated corn stover. Biomass and Bioenergy, 2017, 98, 1-7.	2.9	20
27	Solventless synthesis of solketal with commercially available sulfonic acid based ion exchange resins and their catalytic performance. Green Processing and Synthesis, 2017, 6, 79-89.	1.3	15
28	Metabolic kinetic model for dibenzothiophene desulfurization through 4S pathway using intracellular compound concentrations. Biochemical Engineering Journal, 2017, 117, 89-96.	1.8	12
29	Kinetic modeling of 1,3-propanediol production from raw glycerol by Shimwellia blattae : Influence of the initial substrate concentration. Biochemical Engineering Journal, 2017, 117, 57-65.	1.8	22
30	Effect of fluid dynamic conditions on 2,3â€butanediol production by <i>Raoultella terrigena</i> in <scp>SBTR</scp> : oxygen transfer and uptake rates. Journal of Chemical Technology and Biotechnology, 2017, 92, 1266-1275.	1.6	16
31	Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate. Bioresource Technology, 2016, 216, 28-35.	4.8	26
32	Experimental and modelling approach to the catalytic coproduction of glycerol carbonate and ethylene glycol as a means to valorise glycerol. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 89-100.	2.7	22
33	Enzymatic saccharification of acid pretreated corn stover: Empirical and fractal kinetic modelling. Bioresource Technology, 2016, 220, 110-116.	4.8	19
34	Enzymatic synthesis of ibuprofen monoglycerides catalyzed by free Candida antarctica lipase B in a toluene–glycerol biphasic medium. RSC Advances, 2016, 6, 69658-69669.	1.7	14
35	Influence of oxygen transfer on Pseudomonas putida effects on growth rate and biodesulfurization capacity. Bioprocess and Biosystems Engineering, 2016, 39, 545-554.	1.7	21
36	Biodesulfurization of dibenzothiophene by resting cells of <i>Pseudomonas putida</i> <scp>CECT5279</scp> : influence of the oxygen transfer rate in the scaleâ€up from shaken flask to stirred tank reactor. Journal of Chemical Technology and Biotechnology, 2016, 91, 184-189.	1.6	24

#	Article	IF	CITATIONS
37	1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: Operational conditions and kinetics in batch cultivations. Bioresource Technology, 2016, 200, 830-837.	4.8	33
38	Kinetics of the production of glycerol carbonate by transesterification of glycerol with dimethyl and ethylene carbonate using potassium methoxide, a highly active catalyst. Fuel Processing Technology, 2015, 138, 243-251.	3.7	66
39	Kinetic modelling of the solventless synthesis of solketal with a sulphonic ion exchange resin. Chemical Engineering Journal, 2015, 269, 194-202.	6.6	66
40	1,3-Propanediol production by Klebsiella oxytoca NRRL-B199 from glycerol. Medium composition and operational conditions. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 100-107.	2.1	17
41	Effect of fluiddynamic conditions on growth rate and biodesulfurization capacity of Rhodococcus erythropolis IGTS8. Biochemical Engineering Journal, 2015, 99, 138-146.	1.8	18
42	Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochemistry, 2015, 50, 119-124.	1.8	42
43	Specific oxygen uptake rate as indicator of cell response of Rhodococcus erythropolis cultures to shear effects. Chemical Engineering Science, 2015, 122, 491-499.	1.9	23
44	Phenomenological kinetic model of the synthesis of glycerol carbonate assisted by focused beam reflectance measurements. Chemical Engineering Journal, 2015, 260, 434-443.	6.6	52
45	Liquid–liquid equilibria for the systems ethylene carbonate + ethylene glycol + glycerol; ethylene carbonate + glycerol carbonate + glycerol and ethylene carbonate + ethylene glycol + glycerol carbonate + glycerol at catalytic reacting temperatures. Chemical Engineering Research and Design, 2015. 94. 440-448.	2.7	13
46	Sustainable joint solventless coproduction of glycerol carbonate and ethylene glycol via thermal transesterification of glycerol. RSC Advances, 2014, 4, 53206-53215.	1.7	16
47	Homogeneous catalytic esterification of glycerol with cinnamic and methoxycinnamic acids to cinnamate glycerides in solventless medium: Kinetic modeling. Chemical Engineering Journal, 2014, 247, 174-182.	6.6	27
48	Liquid–Liquid Equilibria for the System Acetone + Solketal + Glycerol at (303.2, 313.2, and 323.2) K. Journal of Chemical & Engineering Data, 2014, 59, 2850-2855.	1.0	26
49	Liquid–liquid equilibria for the ternary systems DMC–methanol–glycerol, DMC–glycerol carbonate–glycerol and the quaternary system DMC–methanol–glycerol carbonate–glycerol at catalytic reacting temperatures. Chemical Engineering Research and Design, 2014, 92, 2797-2805.	2.7	29
50	Thermal esterification of cinnamic and p-methoxycinnamic acids with glycerol to cinnamate glycerides in solventless media: A kinetic model. Chemical Engineering Journal, 2013, 225, 710-719.	6.6	16
51	The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Bioprocess and Biosystems Engineering, 2013, 36, 911-925.	1.7	39
52	Phenomenological kinetic modelling of the esterification of rosin and polyols. Chemical Engineering Journal, 2012, 197, 387-397.	6.6	23
53	Extended kinetic model for DBT desulfurization using Pseudomonas Putida CECT5279 in resting cells. Biochemical Engineering Journal, 2012, 66, 52-60.	1.8	14
54	Esterification of benzoic acid and glycerol to α-monobenzoate glycerol in solventless media using an industrial free Candida antarctica lipase B. Process Biochemistry, 2012, 47, 243-250.	1.8	32

#	Article	IF	CITATIONS
55	Kinetic modelling of the esterification of rosin and glycerol: Application to industrial operation. Chemical Engineering Journal, 2011, 169, 319-328.	6.6	35
56	Disproportionation of rosin on an industrial Pd/C catalyst: Reaction pathway and kinetic model discrimination. Bioresource Technology, 2011, 102, 3504-3511.	4.8	21
57	Mixtures of Pseudomonas putida CECT 5279 cells of different ages: Optimization as biodesulfurization catalyst. Process Biochemistry, 2011, 46, 1323-1328.	1.8	25
58	Oxygen uptake rate in microbial processes: An overview. Biochemical Engineering Journal, 2010, 49, 289-307.	1.8	344
59	Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain. Applied and Environmental Microbiology, 2009, 75, 875-877.	1.4	34
60	Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 2009, 27, 153-176.	6.0	1,085
61	Biodesulfurization of Dibenzothiophene (DBT) Using Pseudomonas putida CECT 5279: A Biocatalyst Formulation Comparison. Energy & Fuels, 2009, 23, 5491-5495.	2.5	32
62	Kinetic model for DBT desulphurization by resting whole cells of Pseudomonas putida CECT5279. Biochemical Engineering Journal, 2008, 39, 486-495.	1.8	17
63	Activated carbon as catalyst in wet oxidation of phenol: Effect of the oxidation reaction on the catalyst properties and stability. Applied Catalysis B: Environmental, 2008, 81, 122-131.	10.8	38
64	Desulfurization of dibenzothiophene using the 4S enzymatic route: Influence of operational conditions on initial reaction rates. Biocatalysis and Biotransformation, 2007, 25, 286-294.	1.1	6
65	Oxidation and mineralisation of substituted phenols by Fenton's reagent and catalytic wet oxidation. Water Science and Technology, 2007, 55, 37-45.	1.2	25
66	Decolorization of Textile Dyes by Wet Oxidation Using Activated Carbon as Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 2423-2427.	1.8	37
67	Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: Effect of H2O2 dosage and temperature. Journal of Hazardous Materials, 2007, 146, 595-601.	6.5	45
68	Hindered diffusion of proteins and polymethacrylates in controlled-pore glass: An experimental approach. Chemical Engineering Science, 2007, 62, 666-678.	1.9	10
69	Oxygen-Uptake and Mass-Transfer Rates on the Growth ofPseudomonasputidaCECT5279:  Influence on Biodesulfurization (BDS) Capability. Energy & Fuels, 2006, 20, 1565-1571.	2.5	47
70	Kinetic modelling of the thermal inactivation of an industrial β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology, 2006, 38, 1-9.	1.6	40
71	Oxygen transport rate on Rhodococcus erythropolis cultures: Effect on growth and BDS capability. Chemical Engineering Science, 2006, 61, 4595-4604.	1.9	33
72	Thermal and pH inactivation of an immobilized thermostable β-galactosidase from Thermus sp. strain T2: Comparison to the free enzyme. Biochemical Engineering Journal, 2006, 31, 14-24.	1.8	50

#	Article	IF	CITATIONS
73	Oxygen uptake rate measurements both by the dynamic method and during the process growth of Rhodococcus erythropolis IGTS8: Modelling and difference in results. Biochemical Engineering Journal, 2006, 32, 198-204.	1.8	22
74	Reaction network and kinetic modeling of wet oxidation of phenol catalyzed by activated carbon. Chemical Engineering Science, 2006, 61, 2457-2467.	1.9	55
75	Wet oxidation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media. Applied Catalysis B: Environmental, 2006, 65, 269-281.	10.8	75
76	Phenotypic Characterization of <i>DFNA24</i> : Prelingual Progressive Sensorineural Hearing Impairment. Audiology and Neuro-Otology, 2006, 11, 269-275.	0.6	3
77	Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: Influence of media composition. Enzyme and Microbial Technology, 2005, 37, 157-166.	1.6	55
78	Kinetic modelling of the thermal and pH inactivation of a thermostable β-galactosidase from Thermus sp. strain T2. Enzyme and Microbial Technology, 2005, 37, 505-513.	1.6	26
79	Catalytic wet oxidation of phenol on active carbon: stability, phenol conversion and mineralization. Catalysis Today, 2005, 102-103, 213-218.	2.2	55
80	Kinetic model of wet oxidation of phenol at basic pH using a copper catalyst. Chemical Engineering Science, 2005, 60, 4866-4878.	1.9	27
81	Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochemical Engineering Journal, 2005, 22, 229-237.	1.8	67
82	Biodesulfurisation of DBT with Pseudomonas putida CECT5279 by resting cells: Influence of cell growth time on reducing equivalent concentration and HpaC activity. Biochemical Engineering Journal, 2005, 26, 168-175.	1.8	40
83	Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts: Causes and effects. Applied Catalysis B: Environmental, 2005, 61, 323-333.	10.8	139
84	Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors. Biotechnology and Bioengineering, 2005, 92, 761-772.	1.7	79
85	Influence of pH on the wet oxidation of phenol with copper catalyst. Topics in Catalysis, 2005, 33, 181-192.	1.3	38
86	Generalized Kinetic Model for the Catalytic Wet Oxidation of Phenol Using Activated Carbon as the Catalyst. Industrial & Engineering Chemistry Research, 2005, 44, 3869-3878.	1.8	23
87	Production of a Biocatalyst ofPseudomonas putidaCECT5279 for DBT Biodesulfurization:  Influence of the Operational Conditions. Energy & Fuels, 2005, 19, 775-782.	2.5	52
88	Lower toxicity route in catalytic wet oxidation of phenol at basic pH by using bicarbonate media. Applied Catalysis B: Environmental, 2004, 53, 181-194.	10.8	37
89	Theoretical prediction of gas–liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chemical Engineering Science, 2004, 59, 2489-2501.	1.9	150
90	Structured kinetic model for Xanthomonas campestris growth. Enzyme and Microbial Technology, 2004, 34, 583-594.	1.6	10

#	Article	IF	CITATIONS
91	Use of flow cytometry for growth structured kinetic model development. Enzyme and Microbial Technology, 2004, 34, 399-406.	1.6	16
92	Chemical structured kinetic model for xanthan production. Enzyme and Microbial Technology, 2004, 35, 284-292.	1.6	27
93	Production of a Biocatalyst of Pseudomonas putida CECT5279 for Dibenzothiophene (DBT) Biodesulfurization for Different Media Compositions. Energy & Fuels, 2004, 18, 851-857.	2.5	55
94	Evolution of Toxicity upon Wet Catalytic Oxidation of Phenol. Environmental Science & Technology, 2004, 38, 133-138.	4.6	148
95	Hydrolysis of lactose by free and immobilized ?-galactosidase from Thermus sp. strain T2. Biotechnology and Bioengineering, 2003, 81, 241-252.	1.7	41
96	Route of the catalytic oxidation of phenol in aqueous phase. Applied Catalysis B: Environmental, 2002, 39, 97-113.	10.8	253
97	Studies on the activity and the stability of β-galactosidases from Thermus sp strain T2 and from Kluyveromyces fragilis. Enzyme and Microbial Technology, 2002, 30, 392-405.	1.6	61
98	Catalytic Wet Oxidation of Phenol:Â Kinetics of Phenol Uptake. Environmental Science & Technology, 2001, 35, 2828-2835.	4.6	32
99	Catalytic Wet Oxidation of Phenol:Â Kinetics of the Mineralization Rate. Industrial & Engineering Chemistry Research, 2001, 40, 2773-2781.	1.8	36
100	Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Science and Technology, 2001, 35, 245-255.	1.4	168
101	Estimation of oxygen mass transfer coefficient in stirred tank reactors using artificial neural networks. Enzyme and Microbial Technology, 2001, 28, 560-569.	1.6	39
102	Activity over lactose and ONPG of a genetically engineered β-galactosidase from Escherichia coli in solution and immobilized: kinetic modelling. Enzyme and Microbial Technology, 2001, 29, 181-193.	1.6	42
103	Oxidation of phenol in aqueous solution with copper catalysts. Catalysis Today, 2001, 66, 511-517.	2.2	28
104	Viscosity of guar gum and xanthan/guar gum mixture solutions. Journal of the Science of Food and Agriculture, 2000, 80, 1722-1727.	1.7	163
105	Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology, 2000, 27, 583-592.	1.6	83
106	Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology, 2000, 27, 680-690.	1.6	151
107	Xanthan gum production under several operational conditions: molecular structure and rheological propertiesâ~†. Enzyme and Microbial Technology, 2000, 26, 282-291.	1.6	148
108	Xanthan gum: production, recovery, and properties. Biotechnology Advances, 2000, 18, 549-579.	6.0	1,166

#	Article	IF	CITATIONS
109	Organosolv Delignification of Eucalyptus globulus:  Kinetic Study of Autocatalyzed Ethanol Pulping. Industrial & Engineering Chemistry Research, 2000, 39, 34-39.	1.8	37
110	Kinetic Model for Anaerobic Digestion of Livestock Manure. Enzyme and Microbial Technology, 1999, 25, 55-60.	1.6	50
111	Unstructured kinetic model for sophorolipid production by Candida bombicola. Enzyme and Microbial Technology, 1999, 25, 613-621.	1.6	41
112	Overall rate of aqueous-phase catalytic oxidation of phenol: pH and catalyst loading influences. Catalysis Today, 1999, 48, 109-117.	2.2	34
113	Title is missing!. World Journal of Microbiology and Biotechnology, 1999, 15, 269-276.	1.7	23
114	Sophorolipid production by Candida bombicola: Medium composition and culture methods. Journal of Bioscience and Bioengineering, 1999, 88, 488-494.	1.1	131
115	Production and Isolation of Xanthan Gum. Methods in Biotechnology, 1999, , 7-21.	0.2	4
116	Kinetics ofEucalyptus globulusDelignification in a Methanolâ^'Water Medium. Industrial & Engineering Chemistry Research, 1999, 38, 3324-3332.	1.8	26
117	A kinetic model for beer production under industrial operational conditions. Mathematics and Computers in Simulation, 1998, 48, 65-74.	2.4	59
118	Intracellular compounds quantification by means of flow cytometry in bacteria: Application to xanthan production byXanthomonas campestris. , 1998, 57, 87-94.		13
119	Kinetic Modeling of Lactose Hydrolysis by a β-Galactosidase from Kluyveromices Fragilis. Enzyme and Microbial Technology, 1998, 22, 558-567.	1.6	101
120	Metabolic structured kinetic model for xanthan production. Enzyme and Microbial Technology, 1998, 23, 75-82.	1.6	37
121	Mass transfer coefficient in stirred tank reactors for xanthan gum solutions. Biochemical Engineering Journal, 1998, 1, 1-10.	1.8	104
122	Oxidation of Hardwood Kraft-Lignin to Phenolic Derivatives. Nitrobenzene and Copper Oxide as Oxidants. Journal of Wood Chemistry and Technology, 1997, 17, 259-285.	0.9	62
123	Kinetic Modeling of Kraft Delignification ofEucalyptus globulus. Industrial & Engineering Chemistry Research, 1997, 36, 4114-4125.	1.8	40
124	Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzyme and Microbial Technology, 1997, 21, 221-229.	1.6	42
125	Direct test of adsorption enthalpy in 1-butene isomerization over a silica—alumina catalyst. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 60, 147-154.	0.1	0
126	Xanthan gum production: An unstructured kinetic model. Enzyme and Microbial Technology, 1995, 17, 206-217.	1.6	48

#	Article	IF	CITATIONS
127	Effective diffusivity under inert and reaction conditions. Chemical Engineering Science, 1994, 49, 3091-3102.	1.9	22
128	Apparent yield stress in xanthan gum solutions at low concentrations. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 53, B41-B46.	0.1	11
129	Deactivation of a silica-alumina catalyst by coke deposition. Industrial & Engineering Chemistry Research, 1993, 32, 2626-2632.	1.8	10
130	n-Octane liquid-phase oxidation catalyzed by cobalt salts: Overall kinetic and product distribution. The Chemical Engineering Journal, 1990, 43, 33-40.	0.4	1
131	Modeling of the liquid-phase n-octane oxidation catalyzed by cobalt. Industrial & Engineering Chemistry Research, 1990, 29, 1989-1994.	1.8	11
132	Determination of deactivation kinetic parameters, I. Data from differential reactors. Reaction Kinetics and Catalysis Letters, 1989, 40, 157-162.	0.6	2
133	Determination of deactivation kinetic parameters, II. Data from integral reactors. Reaction Kinetics and Catalysis Letters, 1989, 40, 163-170.	0.6	3
134	Modeling of the thermal n-octane oxidation in the liquid phase. Industrial & Engineering Chemistry Research, 1989, 28, 43-48.	1.8	36
135	A study of segregation in a gas-solid fluidized bed: Particles of different density. Powder Technology, 1989, 58, 169-174.	2.1	37
136	A comparison of kinetic data interpretation methods: Thermal oxidation of n-octane in liquid phase. The Chemical Engineering Journal, 1988, 39, 47-54.	0.4	2
137	Analysis of the impurities in industrial É≻-caprolactam. Hypothesis of formation. Journal of Applied Polymer Science, 1981, 26, 3271-3282.	1.3	23