Yujun Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/2836076/yujun-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

152 6,254 40 75 g-index

159 7,731 8.2 6.16 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
152	Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. <i>Environmental Science & Environmental Scien</i>	10.3	494
151	Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. <i>Environmental Science & Environmental Science</i>	10.3	479
150	Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. <i>Chemosphere</i> , 2013 , 92, 925-32	8.4	404
149	Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. <i>Environmental Science & Environmental Scien</i>	10.3	397
148	Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. <i>Environmental Science & Environmental Science</i>	10.3	228
147	Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. <i>Bioresource Technology</i> , 2015 , 176, 210-7	11	210
146	Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals. <i>Chemical Engineering Journal</i> , 2018 , 348, 526-534	14.7	168
145	Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation. <i>Applied Catalysis B: Environmental</i> , 2017 , 214, 34-45	21.8	149
144	Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study. <i>Journal of Hazardous Materials</i> , 2016 , 316, 232-41	12.8	133
143	Transformation of polychlorinated biphenyls by persulfate at ambient temperature. <i>Chemosphere</i> , 2013 , 90, 1573-80	8.4	118
142	Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. <i>Chemosphere</i> , 2005 , 59, 167-75	8.4	108
141	Effects of low-molecular-weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles. <i>Journal of Hazardous Materials</i> , 2009 , 162, 1135-40	12.8	101
140	Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics. <i>Geoderma</i> , 2008 , 146, 224-230	6.7	98
139	A scientometric review of biochar research in the past 20 years (1998\(\mathbb{Q}\)018). Biochar, 2019, 1, 23-43	10	96
138	Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. <i>Environment International</i> , 2011 , 37, 1098-104	12.9	95
137	Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. <i>Journal of Environmental Sciences</i> , 2004 , 16, 371-4	6.4	90
136	Formation of crystalline Zn-Al layered double hydroxide precipitates on Falumina: the role of mineral dissolution. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	75

(2014-2019)

135	hydrocarbon-contaminated soils: An in situ pilot-scale study. <i>Chemical Engineering Journal</i> , 2019 , 355, 65-75	14.7	74
134	Reductive Hexachloroethane Degradation by SO with Thermal Activation of Persulfate under Anaerobic Conditions. <i>Environmental Science & Environmental </i>	10.3	72
133	Kinetics, intermediates and acute toxicity of arsanilic acid photolysis. <i>Chemosphere</i> , 2014 , 107, 274-281	8.4	65
132	Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations. <i>Environmental Pollution</i> , 2013 , 172, 86-93	9.3	65
131	Subacute toxicity of copper and glyphosate and their interaction to learthworm (Eisenia fetida). <i>Environmental Pollution</i> , 2013 , 180, 71-7	9.3	63
130	Redox-Active Oxygen-Containing Functional Groups in Activated Carbon Facilitate Microbial Reduction of Ferrihydrite. <i>Environmental Science & Environmental Science & Environm</i>	10.3	62
129	New Insights into the Mechanism of the Catalytic Decomposition of Hydrogen Peroxide by Activated Carbon: Implications for Degradation of Diethyl Phthalate. <i>Industrial & Dietyl Engineering Chemistry Research</i> , 2014 , 53, 19925-19933	3.9	62
128	Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics. <i>Chemosphere</i> , 2004 , 57, 1237-44	8.4	60
127	Effect of Organic Matter on Sorption of Zn on Soil: Elucidation by Wien Effect Measurements and EXAFS Spectroscopy. <i>Environmental Science & Examp; Technology</i> , 2016 , 50, 2931-7	10.3	58
126	Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy. <i>Journal of Hazardous Materials</i> , 2014 , 279, 212-9	12.8	57
125	Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification. <i>Environmental Science & Environmental Science & Environmental</i>	361 ³	57
124	Efficient transformation of DDT by peroxymonosulfate activated with cobalt in aqueous systems: Kinetics, products, and reactive species identification. <i>Chemosphere</i> , 2016 , 148, 68-76	8.4	54
123	Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron. <i>Journal of Environmental Sciences</i> , 2011 , 23, 1286-92	6.4	54
122	Pilot-scale electrokinetic treatment of a Cu contaminated red soil. <i>Chemosphere</i> , 2006 , 63, 964-71	8.4	52
121	Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II). Journal of Hazardous Materials, 2019 , 362, 311-317	12.8	51
120	Surface-modified nanoscale carbon black used as sorbents for Cu(II) and Cd(II). <i>Journal of Hazardous Materials</i> , 2010 , 174, 34-9	12.8	50
119	Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China. <i>Journal of Hazardous Materials</i> , 2006 , 131, 19-27	12.8	49
118	Photo-induced oxidation of Sb(III) on goethite. <i>Chemosphere</i> , 2014 , 95, 295-300	8.4	48

117	The oxidation and sorption mechanism of Sb on EMnO 2. Chemical Engineering Journal, 2018, 342, 429-4	1 37 4.7	47
116	Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: effects of Cu, ionic strength, and ionic composition. <i>Journal of Colloid and Interface Science</i> , 2011 , 360, 398-407	9.3	47
115	Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field. <i>Chemosphere</i> , 2007 , 67, 1671-6	8.4	46
114	Phosphate affects the adsorption of tetracycline on two soils with different characteristics. <i>Geoderma</i> , 2010 , 156, 237-242	6.7	44
113	Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol). <i>Journal of Hydrology</i> , 2014 , 519, 1677-1687	6	42
112	A new insight into the immobilization mechanism of Zn on biochar: the role of anions dissolved from ash. <i>Scientific Reports</i> , 2016 , 6, 33630	4.9	40
111	Effect of iron plaque on antimony uptake by rice (Oryza sativa L.). <i>Environmental Pollution</i> , 2015 , 204, 133-40	9.3	38
110	Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite. <i>Chemosphere</i> , 2016 , 147, 44-51	8.4	38
109	Cosorption of zinc and glyphosate on two soils with different characteristics. <i>Journal of Hazardous Materials</i> , 2006 , 137, 76-82	12.8	37
108	Antimony oxidation and sorption behavior on birnessites with different properties (EMnO and triclinic birnessite). <i>Environmental Pollution</i> , 2019 , 246, 990-998	9.3	37
107	Visualizing the emerging trends of biochar research and applications in 2019: a scientometric analysis and review. <i>Biochar</i> , 2020 , 2, 135-150	10	36
106	TiO2 photocatalytic degradation of tetracycline as affected by a series of environmental factors. Journal of Soils and Sediments, 2014 , 14, 1350-1358	3.4	36
105	Automatic pH control system enhances the dechlorination of 2,4,4Rtrichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Felland Pd/Fell <i>Environmental Science and Pollution Research</i> , 2012 , 19, 448-57	5.1	35
104	Mechanistic understanding of reduced AgNP phytotoxicity induced by extracellular polymeric substances. <i>Journal of Hazardous Materials</i> , 2016 , 308, 21-8	12.8	34
103	Speciation and location of arsenic and antimony in rice samples around antimony mining area. <i>Environmental Pollution</i> , 2019 , 252, 1439-1447	9.3	32
102	Chemodiversity of Soil Dissolved Organic Matter. <i>Environmental Science & Environmental Science & Envi</i>	10.3	32
101	Effect of nanoparticle hydroxyapatite on the immobilization of Cu and Zn in polluted soil. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 73-80	5.1	31
100	Oxidation mechanism of As(III) in the presence of polyphenols: New insights into the reactive oxygen species. <i>Chemical Engineering Journal</i> , 2016 , 285, 69-76	14.7	31

(2018-2009)

99	Adsorption and desorption of Cu(II), Zn(II), Pb(II), and Cd(II) on the soils amended with nanoscale hydroxyapatite. <i>Environmental Progress and Sustainable Energy</i> , 2009 , 29, 233-241	2.5	31
98	TiO2 photocatalytic degradation of 4-chlorobiphenyl as affected by solvents and surfactants. <i>Journal of Soils and Sediments</i> , 2012 , 12, 376-385	3.4	30
97	Synergy between Iron and Selenide on FeSe(111) Surface Driving Peroxymonosulfate Activation for Efficient Degradation of Pollutants. <i>Environmental Science & Environmental Sc</i>	10.3	30
96	Sorption isotherms and kinetics of Sb(V) on several Chinese soils with different physicochemical properties. <i>Journal of Soils and Sediments</i> , 2013 , 13, 344-353	3.4	29
95	Reducing the bioavailability of PCBs in soil to plant by biochars assessed with triolein-embedded cellulose acetate membrane technique. <i>Environmental Pollution</i> , 2013 , 174, 250-6	9.3	28
94	Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study. <i>Environmental Science & Exap; Technology</i> , 2013 , 47, 4211-9	10.3	28
93	Effects of Soil Organic Matter on Sorption of Metal Ions on Soil Clay Particles. <i>Soil Science Society of America Journal</i> , 2015 , 79, 794-802	2.5	25
92	Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi. <i>Journal of Hazardous Materials</i> , 2015 , 292, 44-51	12.8	25
91	The effects of Fe-bearing smectite clays on OH formation and diethyl phthalate degradation with polyphenols and HO. <i>Journal of Hazardous Materials</i> , 2018 , 357, 483-490	12.8	25
90	Predicting Cadmium Safety Thresholds in Soils Based on Cadmium Uptake by Chinese Cabbage. <i>Pedosphere</i> , 2017 , 27, 475-481	5	24
89	Interactive effects of rice straw biochar and EAlO on immobilization of Zn. <i>Journal of Hazardous Materials</i> , 2019 , 373, 250-257	12.8	24
88	Zinc adsorption on goethite as affected by glyphosate. <i>Journal of Hazardous Materials</i> , 2008 , 151, 179-8	34 12.8	24
87	Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation. <i>Chemosphere</i> , 2016 , 150, 71-78	8.4	23
86	Unraveling the effects of gallic acid on Sb(III) adsorption and oxidation on goethite. <i>Chemical Engineering Journal</i> , 2019 , 369, 414-421	14.7	22
85	Fate of As(III) and As(V) during Microbial Reduction of Arsenic-Bearing Ferrihydrite Facilitated by Activated Carbon. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 878-887	3.2	21
84	Does glyphosate impact on Cu uptake by, and toxicity to, the earthworm Eisenia fetida?. <i>Ecotoxicology</i> , 2012 , 21, 2297-305	2.9	21
83	Interactions between nitrogen application and soil properties and their impacts on the transfer of cadmium from soil to wheat (Triticum aestivum L.) grain. <i>Geoderma</i> , 2020 , 357, 113923	6.7	21
82	Biochar decreased the bioavailability of Zn to rice and wheat grains: Insights from microscopic to macroscopic scales. <i>Science of the Total Environment</i> , 2018 , 621, 160-167	10.2	21

81	Cotransformation of Carbon Dots and Contaminant under Light in Aqueous Solutions: A Mechanistic Study. <i>Environmental Science & Environmental Science </i>	10.3	20
80	The regime and P availability of omitting P fertilizer application for rice in rice/wheat rotation in the Taihu Lake Region of southern China. <i>Journal of Soils and Sediments</i> , 2015 , 15, 844-853	3.4	20
79	Effects of Fe(II) on Cd(II) immobilization by Mn(III)-rich EMnO2. <i>Chemical Engineering Journal</i> , 2018 , 353, 167-175	14.7	20
78	Remediation of polychlorinated biphenyl-contaminated soil by soil washing and subsequent TiO2 photocatalytic degradation. <i>Journal of Soils and Sediments</i> , 2012 , 12, 1371-1379	3.4	20
77	Assessing the Impact of Iron-based Nanoparticles on pH, Dissolved Organic Carbon, and Nutrient Availability in Soils. <i>Soil and Sediment Contamination</i> , 2012 , 21, 101-114	3.2	20
76	Efficient activation of peroxymonosulfate by copper sulfide for diethyl phthalate degradation: Performance, radical generation and mechanism. <i>Science of the Total Environment</i> , 2020 , 749, 142387	10.2	19
75	Mechanisms of Sb(III) oxidation mediated by low molecular weight phenolic acids. <i>Chemical Engineering Journal</i> , 2019 , 356, 190-198	14.7	18
74	Effects of soil properties, nitrogen application, plant phenology, and their interactions on plant uptake of cadmium in wheat. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121452	12.8	17
73	Rapid Hydrolysis of Penicillin Antibiotics Mediated by Adsorbed Zinc on Goethite Surfaces. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	16
72	Free cupric ions in contaminated agricultural soils around a copper mine in eastern Nanjing City, China. <i>Journal of Environmental Sciences</i> , 2006 , 18, 927-31	6.4	15
71	Formation of Cd precipitates on EAlO: Implications for Cd sequestration in the environment. <i>Environment International</i> , 2019 , 126, 234-241	12.9	15
70	Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils. Journal of Environmental Sciences, 2005, 17, 711-5	6.4	15
69	Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected by cosolvents and TiOlæatalyst. <i>Chemosphere</i> , 2016 , 144, 628-34	8.4	14
68	Reveal a hidden highly toxic substance in biochar to support its effective elimination strategy. Journal of Hazardous Materials, 2020 , 399, 123055	12.8	14
67	Retention of silver nanoparticles and silver ion to natural soils: effects of soil physicochemical properties. <i>Journal of Soils and Sediments</i> , 2018 , 18, 2491-2499	3.4	14
66	Wien Effect Determination of Adsorption Energies between Heavy Metal Ions and Soil Particles. <i>Soil Science Society of America Journal</i> , 2008 , 72, 56-62	2.5	14
65	Contrasting impacts of pH on the abiotic transformation of hydrochar-derived dissolved organic matter mediated by EMnO2. <i>Geoderma</i> , 2020 , 378, 114627	6.7	14
64	Dissolution and Transformation of ZnO Nano- and Microparticles in Soil Mineral Suspensions. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 495-502	3.2	13

63	Cd(II) retention and remobilization on EMnO and Mn(III)-rich EMnO affected by Mn(II). <i>Environment International</i> , 2019 , 130, 104932	12.9	13
62	Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2351-7	3.8	13
61	Effect of o-phenylenediamine on Cu adsorption and desorption in red soil and its uptake by paddy rice (Oryza sativa). <i>Chemosphere</i> , 2003 , 51, 77-83	8.4	13
60	Adsorption Kinetics of Glyphosate and Copper(II) Alone and Together on Two Types of Soils. <i>Soil Science Society of America Journal</i> , 2009 , 73, 1995-2001	2.5	12
59	Efficient transformation of diethyl phthalate using calcium peroxide activated by pyrite. <i>Chemosphere</i> , 2020 , 253, 126662	8.4	12
58	Rapid DDTs degradation by thermally activated persulfate in soil under aerobic and anaerobic conditions: Reductive radicals vs. oxidative radicals. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123557	12.8	12
57	The formation of DH with Fe-bearing smectite clays and low-molecular-weight thiols: Implication of As(III) removal. <i>Water Research</i> , 2020 , 174, 115631	12.5	11
56	Wien Effect in Suspensions and Its Application in Soil Science. Advances in Agronomy, 2013 , 122, 127-17	87.7	11
55	Sorption mechanism of zinc on reed, lignin, and reed- and lignin-derived biochars: kinetics, equilibrium, and spectroscopic studies. <i>Journal of Soils and Sediments</i> , 2018 , 18, 2535-2543	3.4	9
54	Negative Wien Effect Measurements for Exploring Polarization Processes of Cations Interacting with Negatively Charged Soil Particles. <i>Soil Science Society of America Journal</i> , 2009 , 73, 569-578	2.5	9
53	Role of Reduced Sulfur in the Transformation of Cd(II) Immobilized by EMnO. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 14955-14963	10.3	9
52	Persistent Free Radicals from Low-Molecular-Weight Organic Compounds Enhance Cross-Coupling Reactions and Toxicity of Anthracene on Amorphous Silica Surfaces under Light. <i>Environmental Science & Environmental Science & En</i>	10.3	9
51	Effects of soil properties and aging process on the acute toxicity of cadmium to earthworm Eisenia fetida. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 3708-3717	5.1	9
50	Effects of different water management strategies on the stability of cadmium and copper immobilization by biochar in rice-wheat rotation system. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 202, 110887	7	8
49	Exploring the effect of organic matter on the interactions between mineral particles and cations with Wien effect measurements. <i>Journal of Soils and Sediments</i> , 2013 , 13, 304-311	3.4	8
48	The growth and Cu and Zn uptake of pakchois (Brassica chinesis L.) in an acidic soil as affected by chicken or pig manure. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2007 , 42, 905-12	2.2	8
47	Microorganisms-carbonaceous materials immobilized complexes: Synthesis, adaptability and environmental applications. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125915	12.8	8
46	Macroscopic and microscopic investigation of adsorption and precipitation of Zn on Ealumina in the absence and presence of As. <i>Chemosphere</i> , 2017 , 178, 309-316	8.4	7

45	Measuring the bioavailability of polychlorinated biphenyls to earthworms in soil enriched with biochar or activated carbon using triolein-embedded cellulose acetate membrane. <i>Journal of Soils and Sediments</i> , 2016 , 16, 527-536	3.4	7	
44	Influence of bacterial extracellular polymeric substances on the sorption of Zn on Falumina: A combination of FTIR and EXAFS studies. <i>Environmental Pollution</i> , 2017 , 220, 997-1004	9.3	7	
43	Aromatic Arsenical Additives (AAAs) in the Soil Environment: Detection, Environmental Behaviors, Toxicities, and Remediation. <i>Advances in Agronomy</i> , 2016 , 1-41	7.7	7	
42	Nano FeO embedded in montmorillonite with citric acid enhanced photocatalytic activity of nanoparticles towards diethyl phthalate. <i>Journal of Environmental Sciences</i> , 2021 , 101, 248-259	6.4	7	
41	Transfer and toxicity of silver nanoparticles in the food chain. <i>Environmental Science: Nano</i> , 2021 , 8, 15	19 ₇ :1153	5 ₇	
40	Modeling coupled kinetics of antimony adsorption/desorption and oxidation on manganese oxides. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1691-1696	4.3	7	
39	Cadmium adsorption in montmorillonite as affected by glyphosate. <i>Journal of Environmental Sciences</i> , 2004 , 16, 881-4	6.4	7	
38	Prediction of the uptake of Cd by rice (Oryza sativa) in paddy soils by a multi-surface model. <i>Science of the Total Environment</i> , 2020 , 724, 138289	10.2	6	
37	Binding energies of monovalent anions with Fe/Al oxides based on ion activity and suspension Wien effect methods. <i>Journal of Soils and Sediments</i> , 2010 , 10, 863-869	3.4	6	
36	Effects of low-molecular-weight organic acids on the acute lethality, accumulation, and enzyme activity of cadmium in Eisenia fetida in a simulated soil solution. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 1005-1011	3.8	5	
35	Interactions of Heavy Metal Ions with Paddy Soils as Inferred from Wien Effect Measurements in Dilute Suspensions. <i>Pedosphere</i> , 2006 , 16, 718-725	5	5	
34	Long-term dissolution and transformation of ZnO in soils: The roles of soil pH and ZnO particle size. Journal of Hazardous Materials, 2021 , 415, 125604	12.8	5	
33	Photochemical characterization of paddy water during rice cultivation: Formation of reactive intermediates for As(III) oxidation. <i>Water Research</i> , 2021 , 206, 117721	12.5	5	
32	Exploring the Distribution of Zn2+ in Inner and Outer Helmholtz Planes of the Electrical Double Layer of Soil based on Wien Effect. <i>Soil Science Society of America Journal</i> , 2019 , 83, 97-106	2.5	4	
31	Influence of Soil Properties and Aging on Antimony Toxicity for Barley Root Elongation. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2020 , 104, 714-720	2.7	4	
30	Organo-Modification Effects on Soil ParticlesIhorganic Cations Interactions as Revealed by Wien Effect Measurements. <i>Soil Science Society of America Journal</i> , 2013 , 77, 442-449	2.5	4	
29	(Fe3+)-UVC-(aliphatic/phenolic carboxyl acids) systems for diethyl phthalate ester degradation: A density functional theory (DFT) and experimental study. <i>Applied Catalysis A: General</i> , 2018 , 567, 20-27	5.1	4	
28	Visualizing the development trend and research frontiers of biochar in 2020: a scientometric perspective. <i>Biochar</i> , 2021 , 3, 419	10	4	

(2021-2021)

27	In situ stabilization of the adsorbed Co and Ni in rice straw biochar based on LDH and its reutilization in the activation of peroxymonosulfate. <i>Journal of Hazardous Materials</i> , 2021 , 416, 126215	12.8	4
26	Two transformation pathways of Acetaminophen with Fe saturated clay particles in dark or light. <i>Chemosphere</i> , 2021 , 278, 130399	8.4	4
25	Wien Effect Characterization of Interactions Between Ions and Charged Sites on Clay Surfaces of Variable-Charge Soils. <i>Pedosphere</i> , 2009 , 19, 545-553	5	3
24	Binding and adsorption energy of Cd in soils and its environmental implication for Cd bioavailability. <i>Soil Science Society of America Journal</i> , 2020 , 84, 472-482	2.5	3
23	Combining Path Analysis and X-Ray Absorption Spectroscopy to Unravel the Zn Sorption Mechanism on Soils. <i>Soil Science Society of America Journal</i> , 2018 , 82, 796-802	2.5	2
22	Wien effect determination of binding and adsorption energies between positively charged nano-particles and anions. <i>Journal of Soils and Sediments</i> , 2011 , 11, 783-788	3.4	2
21	Binding and Adsorption Energies of Heavy Metal Ions with Hapli-Udic Argosol and Ferri-Udic Argosol Particles. <i>Pedosphere</i> , 2007 , 17, 688-696	5	2
20	Extraction and Quantification of Nanoparticulate Mercury in Natural Soils <i>Environmental Science</i> & amp; Technology, 2022,	10.3	2
19	UV-Irradiation Facilitating Pb Release from Recycled PVC Microplastics. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2021 , 107, 748-753	2.7	2
18	Evaluating the fraction of electrically associated cations on surfaces of soil particles by extrapolation of strong-field Wien effect measurements in dilute suspensions. <i>Journal of Soils and Sediments</i> , 2016 , 16, 1683-1689	3.4	2
17	Effects of Soil Properties on Cadmium Toxicity to Folsomia candida (Collembola). <i>Bulletin of Environmental Contamination and Toxicology</i> , 2019 , 103, 90-97	2.7	2
16	Time-dependent evolution of Zn(II) fractions in soils remediated by wheat straw biochar. <i>Science of the Total Environment</i> , 2020 , 717, 137021	10.2	1
15	Wien effect of Cd/Zn on soil clay fraction and their interaction. <i>Geochemical Transactions</i> , 2018 , 19, 5	3	1
14	Comparison between ion activity method and suspension Wien effect method in determining binding energy of divalent cations to soil particles. <i>Journal of Soils and Sediments</i> , 2015 , 15, 2276-2284	3.4	1
13	Cu and glyphosate toxicity to earthworm (Eisenia fetida). <i>Chinese Journal of Eco-Agriculture</i> , 2012 , 20, 1077-1082		1
12	Weathered Microplastics Induce Silver Nanoparticle Formation. <i>Environmental Science and Technology Letters</i> ,	11	1
11	Pyridinic- and Pyrrolic Nitrogen in Pyrogenic Carbon Improves Electron Shuttling during Microbial Fe(III) Reduction. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 900-909	3.2	1
10	Reactive oxygen species formation in thiols solution mediated by pyrogenic carbon under aerobic conditions. <i>Journal of Hazardous Materials</i> , 2021 , 415, 125726	12.8	1

9	Facet-Dependent Photoinduced Transformation of Cadmium Sulfide (CdS) Nanoparticles. <i>Environmental Science & Environmental Sci</i>	10.3	1
8	Unraveling the molecular mechanisms of Cd sorption onto MnO-loaded biochar produced from the Mn-hyperaccumulator Phytolacca americana. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127157	12.8	1
7	Combining multisurface model and Gouy-Chapman-Stern model to predict cadmium uptake by cabbage (Brassica Chinensis L.) in soils. <i>Journal of Hazardous Materials</i> , 2021 , 416, 126260	12.8	0
6	Oxidative dissolution of SbO mediated by surface Mn redox cycling in oxic aquatic systems <i>Water Research</i> , 2022 , 217, 118403	12.5	O
5	Oxytetracycline induced the redox of iron and promoted the oxidation of As(III) <i>Science of the Total Environment</i> , 2022 , 154381	10.2	0
4	Sorption mechanism of cadmium on soils: A combination of batch experiment, path analysis, and EXAFS techniques. <i>Geoderma</i> , 2022 , 422, 115950	6.7	О
3	Wien Effect Measurements in Soil Colloidal Suspensions: A Novel Method for Characterizing the Interactions between Charged Particles and Counter Ions 2010 , 157-160		
2	The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system <i>Chemosphere</i> , 2022 , 297, 134147	8.4	
1	Greater Bioaccessibility of Silver Nanoparticles in Earthworm than in Soils <i>Bulletin of Environmental Contamination and Toxicology</i> , 2022 , 1	2.7	