Tanya L Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2835916/publications.pdf

Version: 2024-02-01

		172207	174990
77	3,162	29	52
papers	citations	h-index	g-index
89	89	89	2897
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malaria Journal, 2011, 10, 80.	0.8	534
2	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	6.0	492
3	Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malaria Journal, 2010, 9, 187.	0.8	146
4	Successful malaria elimination strategies require interventions that target changing vector behaviours. Malaria Journal, 2013, 12, 56.	0.8	135
5	Screening Mosquito House Entry Points as a Potential Method for Integrated Control of Endophagic Filariasis, Arbovirus and Malaria Vectors. PLoS Neglected Tropical Diseases, 2010, 4, e773.	1.3	103
6	Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malaria Journal, 2008, 7, 158.	0.8	100
7	Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-east Zambia. Parasites and Vectors, 2012, 5, 101.	1.0	97
8	The impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in southern Tanzania. Malaria Journal, 2015, 14, 17.	0.8	74
9	Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malaria Journal, 2013, 12, 49.	0.8	67
10	Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination. Malaria Journal, 2011, 10, 133.	0.8	62
11	Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3142-3151.	1.2	60
12	Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence. Malaria Journal, 2009, 8, 309.	0.8	58
13	Infection of Anopheles gambiae mosquitoes with entomopathogenic fungi: effect of host age and blood-feeding status. Parasitology Research, 2011, 108, 317-322.	0.6	54
14	A Modified Experimental Hut Design for Studying Responses of Disease-Transmitting Mosquitoes to Indoor Interventions: The Ifakara Experimental Huts. PLoS ONE, 2012, 7, e30967.	1.1	54
15	Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia. Parasites and Vectors, 2013, 6, 91.	1.0	52
16	Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents. Malaria Journal, 2012, 11, 87.	0.8	49
17	Human malaria diagnosis using a single-step direct-PCR based on the Plasmodium cytochrome oxidase III gene. Malaria Journal, 2016, 15, 128.	0.8	48
18	Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands. Malaria Journal, 2011, 10, 287.	0.8	46

#	Article	IF	CITATIONS
19	An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis. Parasites and Vectors, 2010, 3, 18.	1.0	42
20	Frequent blood feeding enables insecticide-treated nets to reduce transmission by mosquitoes that bite predominately outdoors. Malaria Journal, 2016, 15, 156.	0.8	41
21	Fast and robust single PCR for Plasmodium sporozoite detection in mosquitoes using the cytochrome oxidase I gene. Malaria Journal, 2017, 16, 230.	0.8	39
22	Biologically based insecticides for the control of immature Australian mosquitoes: a review. Australian Journal of Entomology, 2008, 47, 232-242.	1.1	37
23	An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns. Malaria Journal, 2012, 11, 172.	0.8	36
24	Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Parasites and Vectors, 2010, 3, 80.	1.0	35
25	Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence. Malaria Journal, 2010, 9, 246.	0.8	33
26	Vectorial Capacity of Aedes aegypti for Dengue Virus Type 2 Is Reduced with Co-infection of Metarhizium anisopliae. PLoS Neglected Tropical Diseases, 2013, 7, e2013.	1.3	33
27	Efficacy of VectoBac (Bacillus thuringiensis variety israelensis) Formulations for Mosquito Control in Australia. Journal of Economic Entomology, 2003, 96, 1786-1791.	0.8	32
28	Environmental effects of mosquito insecticides on saltmarsh invertebrate fauna. Aquatic Biology, 2009, 6, 77-90.	0.5	32
29	First report of Metarhizium anisopliae IP 46 pathogenicity in adult Anopheles gambiae s.s. and An. arabiensis (Diptera; Culicidae). Parasites and Vectors, 2009, 2, 59.	1.0	31
30	The impact of host species and vector control measures on the fitness of African malaria vectors. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122823.	1.2	28
31	Influence of environmental factors on the abundance of Anopheles farauti larvae in large brackish water streams in Northern Guadalcanal, Solomon Islands. Malaria Journal, 2011, 10, 262.	0.8	27
32	Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies. American Journal of Tropical Medicine and Hygiene, 2015, 93, 28-41.	0.6	27
33	<i>Anopheles punctulatus</i> Group: Evolution, Distribution, and Control. Annual Review of Entomology, 2015, 60, 335-350.	5.7	26
34	Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands. Malaria Journal, 2016, 15, 151.	0.8	25
35	Spatial-temporal heterogeneity in malaria receptivity is best estimated by vector biting rates in areas nearing elimination. Parasites and Vectors, 2018, 11, 606.	1.0	25
36	Determinants of host feeding success by Anopheles farauti. Malaria Journal, 2016, 15, 152.	0.8	24

3

#	Article	IF	CITATIONS
37	Capacity of National Malaria Control Programmes to implement vector surveillance: a global analysis. Malaria Journal, 2020, 19, 422.	0.8	23
38	Zoonotic malaria transmission and land use change in Southeast Asia: what is known about the vectors. Malaria Journal, 2022, 21, 109.	0.8	22
39	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. PLoS Computational Biology, 2020, 16, e1007446.	1.5	20
40	Efficacy of VectoBac (<l>Bacillus thuringiensis</l> variety <l>israelensis</l>) Formulations for Mosquito Control in Australia. Journal of Economic Entomology, 2003, 96, 1786-1791.	0.8	19
41	The bionomics of the malaria vector Anopheles farauti in Northern Guadalcanal, Solomon Islands: issues for successful vector control. Malaria Journal, 2014, 13, 56.	0.8	19
42	Evaluating the feasibility of using insecticide quantification kits (IQK) for estimating cyanopyrethroid levels for indoor residual spraying in Vanuatu. Malaria Journal, 2014, 13, 178.	0.8	18
43	A global analysis of National Malaria Control Programme vector surveillance by elimination and control status in 2018. Malaria Journal, 2019, 18, 399.	0.8	18
44	Nextgen Vector Surveillance Tools: sensitive, specific, cost-effective and epidemiologically relevant. Malaria Journal, 2020, 19, 432.	0.8	16
45	A generic schema and data collection forms applicable to diverse entomological studies of mosquitoes. Source Code for Biology and Medicine, 2016, 11, 4.	1.7	15
46	Microsatellite and mitochondrial markers reveal strong gene flow barriers for Anopheles farauti in the Solomon Archipelago: implications for malaria vector control. International Journal for Parasitology, 2014, 44, 225-233.	1.3	14
47	Human exposure to Anopheles farauti bites in the Solomon Islands is not associated with IgG antibody response to the gSG6 salivary protein of Anopheles gambiae. Malaria Journal, 2019, 18, 334.	0.8	14
48	Geographic coincidence of increased malaria transmission hazard and vulnerability occurring at the periphery of two Tanzanian villages. Malaria Journal, 2013, 12, 24.	0.8	13
49	A new resting trap to sample fungus-infected mosquitoes, and the pathogenicity of Lecanicillium muscarium to culicid adults. Acta Tropica, 2010, 116, 105-107.	0.9	11
50	Survival of anopheline eggs and their susceptibility to infection with Metarhizium anisopliae and Beauveria bassiana under laboratory conditions. Parasitology Research, 2011, 109, 751-758.	0.6	11
51	Feasibility and acceptability of insecticide-treated plastic sheeting (ITPS) for vector control in Papua New Guinea. Malaria Journal, 2012, 11, 342.	0.8	11
52	Copulation Activity, Sperm Production and Conidia Transfer in Aedes aegypti Males Contaminated by Metarhizium anisopliae: A Biological Control Prospect. PLoS Neglected Tropical Diseases, 2015, 9, e0004144.	1.3	11
53	Maximising mosquito collections from barrier screens: the impacts of physical design and operation parameters. Parasites and Vectors, 2019, 12, 31.	1.0	10
54	Protecting the peri-domestic environment: the challenge for eliminating residual malaria. Scientific Reports, 2020, 10, 7018.	1.6	10

#	Article	IF	CITATIONS
55	Arboviral Disease Outbreaks in the Pacific Islands Countries and Areas, 2014 to 2020: A Systematic Literature and Document Review. Pathogens, 2022, 11, 74.	1.2	10
56	The Systematics and Bionomics of Malaria Vectors in the Southwest Pacific. , 0, , .		9
57	The Effect of Sound Lure Frequency and Habitat Type on Male Aedes albopictus (Diptera: Culicidae) Capture Rates With the Male Aedes Sound Trap. Journal of Medical Entomology, 2021, 58, 708-716.	0.9	8
58	Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands. Malaria Journal, 2016, 15, 164.	0.8	7
59	Long-Term Insecticidal Activity and Physical Integrity of Olyset Nets in Tafea Province, Vanuatu. Journal of Medical Entomology, 2014, 51, 164-169.	0.9	6
60	Mapping a Plasmodium transmission spatial suitability index in Solomon Islands: a malaria monitoring and control tool. Malaria Journal, 2018, 17, 381.	0.8	6
61	Conservation of the false water rat (Xeromys myoides) depends on landscape complementation. Australian Mammalogy, 2009, 31, 81.	0.7	5
62	Getting to zero: micro-foci of malaria in the Solomon Islands requires stratified control. Malaria Journal, 2021, 20, 248.	0.8	5
63	A global assessment of surveillance methods for dominant malaria vectors. Scientific Reports, 2021, 11, 15337.	1.6	5
64	Estimating Contact Rates Between Metarhizium anisopliae–Exposed Males With Female Aedes aegypti. Frontiers in Cellular and Infection Microbiology, 2021, 11, 616679.	1.8	4
65	Quality Assurance of Aerial Applications of Larvicides for Mosquito Control: Effects of Granule and Catch Tray Size on Field Monitoring Programs. Journal of Economic Entomology, 2009, 102, 507-514.	0.8	3
66	Smallest Anopheles farauti occur during the peak transmission season in the Solomon Islands. Malaria Journal, 2019, 18, 208.	0.8	3
67	Gene flow between island populations of the malaria mosquito, Anopheles hinesorum, may have contributed to the spread of divergent host preference phenotypes. Evolutionary Applications, 2021, 14, 2244-2257.	1.5	3
68	Defining the larval habitat: abiotic and biotic parameters associated with Anopheles farauti productivity. Malaria Journal, 2019, 18, 416.	0.8	2
69	Dengue Serotypes Circulating in Aedes aegypti and Humans in a Poor or Peripheral Neighborhood at Reynosa, Mexico. Southwestern Entomologist, 2021, 45, .	0.1	2
70	Seroprevalence of dengue, Zika, chikungunya and Ross River viruses across the Solomon Islands. PLoS Neglected Tropical Diseases, 2022, 16, e0009848.	1.3	2
71	Exploiting the behaviour of wild malaria vectors to achieve high infection with entomopathogenic fungus. Malaria Journal, 2010, 9, .	0.8	1
72	Australian mosquito assemblages vary between ground and sub-canopy habitats. Parasites and Vectors, 2021, 14, 515.	1.0	1

#	Article	IF	CITATIONS
73	Unique fine scale village spatial-temporal distributions of Anopheles farauti differ by physiological state and sex. Parasites and Vectors, 2019, 12, 558.	1.0	O
74	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16 , e 1007446 .		0
75	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		O
76	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16 , e 1007446 .		0
77	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0