
## Ibragim Gaidarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2835433/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Embelin and its derivatives unravel the signaling, proinflammatory and antiatherogenic properties of GPR84 receptor. Pharmacological Research, 2018, 131, 185-198.                                                       | 7.1 | 52        |
| 2  | Angiotensin (1–7) does not interact directly with MAS1, but can potently antagonize signaling from the AT1 receptor. Cellular Signalling, 2018, 50, 9-24.                                                                | 3.6 | 43        |
| 3  | Discovery of<br>(Ralinepag): An Orally Active Prostacyclin Receptor Agonist for the Treatment of Pulmonary Arterial<br>Hypertension, Journal of Medicinal Chemistry, 2017, 60, 913-927.                                  | 6.4 | 14        |
| 4  | Discovery of APD371: Identification of a Highly Potent and Selective CB <sub>2</sub> Agonist for the Treatment of Chronic Pain. ACS Medicinal Chemistry Letters, 2017, 8, 1309-1313.                                     | 2.8 | 28        |
| 5  | Discovery of 1a,2,5,5a-tetrahydro-1H-2,3-diaza-cyclopropa[a]pentalen-4-carboxamides as potent and selective CB2 receptor agonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 322-326.                        | 2.2 | 6         |
| 6  | (7-Benzyloxy-2,3-dihydro- <i>1H</i> -pyrrolo[1,2- <i>a</i> ]indol-1-yl)acetic Acids as S1P <sub>1</sub><br>Functional Antagonists. ACS Medicinal Chemistry Letters, 2014, 5, 1334-1339.                                  | 2.8 | 12        |
| 7  | Discovery of APD334: Design of a Clinical Stage Functional Antagonist of the Sphingosine-1-phosphate-1<br>Receptor. ACS Medicinal Chemistry Letters, 2014, 5, 1313-1317.                                                 | 2.8 | 43        |
| 8  | Differential tissue and ligand-dependent signaling of GPR109A receptor: Implications for anti-atherosclerotic therapeutic potential. Cellular Signalling, 2013, 25, 2003-2016.                                           | 3.6 | 35        |
| 9  | Kinetics of 5-HT <sub>2B</sub> Receptor Signaling: Profound Agonist-Dependent Effects on Signaling<br>Onset and Duration. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 645-659.                     | 2.5 | 43        |
| 10 | Phosphoinositide 3-Kinase C2α Links Clathrin to Microtubule-dependent Movement. Journal of<br>Biological Chemistry, 2007, 282, 1249-1256.                                                                                | 3.4 | 31        |
| 11 | Nicotinic Acid Receptor Agonists Differentially Activate Downstream Effectors. Journal of Biological<br>Chemistry, 2007, 282, 18028-18036.                                                                               | 3.4 | 88        |
| 12 | Langerhans Cells Release Prostaglandin D2 in Response to Nicotinic Acid. Journal of Investigative<br>Dermatology, 2006, 126, 2637-2646.                                                                                  | 0.7 | 163       |
| 13 | Individual Phosphoinositide 3-Kinase C2α Domain Activities Independently Regulate Clathrin Function.<br>Journal of Biological Chemistry, 2005, 280, 40766-40772.                                                         | 3.4 | 51        |
| 14 | Membrane Targeting of Endocytic Adaptors: Cargo and Lipid Do It Together. Developmental Cell, 2005,<br>8, 801-802.                                                                                                       | 7.0 | 10        |
| 15 | Major histocompatibility complex class l-intercellular adhesion molecule-1 association on the surface of target cells: implications for antigen presentation to cytotoxic T lymphocytes. Immunology, 2004, 113, 460-471. | 4.4 | 29        |
| 16 | G protein–coupled receptor/arrestin3 modulation of the endocytic machinery. Journal of Cell<br>Biology, 2002, 156, 665-676.                                                                                              | 5.2 | 102       |
| 17 | The Class II Phosphoinositide 3-Kinase C2α Is Activated by Clathrin and Regulates Clathrin-Mediated<br>Membrane Trafficking. Molecular Cell, 2001, 7, 443-449.                                                           | 9.7 | 229       |
| 18 | The Class II Phosphoinositide 3-Kinase PI3K-C2α Is Concentrated in the Trans-Golgi Network and Present<br>in Clathrin-coated Vesicles. Journal of Biological Chemistry, 2000, 275, 11943-11950.                          | 3.4 | 133       |

IBRAGIM GAIDAROV

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Phosphoinositide–Ap-2 Interactions Required for Targeting to Plasma Membrane Clathrin-Coated Pits.<br>Journal of Cell Biology, 1999, 146, 755-764.                                                                                   | 5.2  | 264       |
| 20 | Spatial control of coated-pit dynamics in living cells. Nature Cell Biology, 1999, 1, 1-7.                                                                                                                                           | 10.3 | 386       |
| 21 | Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding.<br>EMBO Journal, 1999, 18, 871-881.                                                                                                   | 7.8  | 195       |
| 22 | A Functional Phosphatidylinositol 3,4,5-Trisphosphate/Phosphoinositide Binding Domain in the<br>Clathrin Adaptor AP-2 α Subunit. IMPLICATIONS FOR THE ENDOCYTIC PATHWAY. Journal of Biological<br>Chemistry, 1996, 271, 20922-20929. | 3.4  | 156       |