Zhang-Jie Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2835429/publications.pdf

Version: 2024-02-01

136	19,827	70	139
papers	citations	h-index	g-index
196	196	196	9632
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Direct Câ^'H Transformation via Iron Catalysis. Chemical Reviews, 2011, 111, 1293-1314.	23.0	1,869
2	Transition-Metal-Free Coupling Reactions. Chemical Reviews, 2014, 114, 9219-9280.	23.0	903
3	Pd-catalyzed oxidative coupling with organometallic reagents via C–H activation. Chemical Communications, 2010, 46, 677.	2.2	757
4	From C(sp2)–H to C(sp3)–H: systematic studies on transition metal-catalyzed oxidative C–C formation. Chemical Society Reviews, 2012, 41, 5588.	18.7	749
5	Organopalladium(iv) chemistry. Chemical Society Reviews, 2010, 39, 712-733.	18.7	662
6	Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations. Accounts of Chemical Research, 2015, 48, 886-896.	7.6	628
7	An efficient organocatalytic method for constructing biaryls through aromatic C–H activation. Nature Chemistry, 2010, 2, 1044-1049.	6.6	601
8	Exploration of New Câ^'O Electrophiles in Cross-Coupling Reactions. Accounts of Chemical Research, 2010, 43, 1486-1495.	7.6	548
9	Multiple CH Activations To Construct Biologically Active Molecules in a Process Completely Free of Organohalogen and Organometallic Components. Angewandte Chemie - International Edition, 2008, 47, 1115-1118.	7.2	478
10	Challenge and progress: palladium-catalyzed sp3 C–H activation. Catalysis Science and Technology, 2011, 1, 191.	2.1	443
11	Palladiumâ€Catalyzed Direct Arylation of (Hetero)Arenes with Aryl Boronic Acids. Angewandte Chemie - International Edition, 2008, 47, 1473-1476.	7.2	421
12	Activation of "Inert―Alkenyl/Aryl CO Bond and Its Application in Crossâ€Coupling Reactions. Chemistry - A European Journal, 2011, 17, 1728-1759.	1.7	415
13	Biaryl Construction via Ni-Catalyzed Câ^'O Activation of Phenolic Carboxylates. Journal of the American Chemical Society, 2008, 130, 14468-14470.	6.6	357
14	Rhodium/Copperâ€Catalyzed Annulation of Benzimides with Internal Alkynes: Indenone Synthesis through Sequential CH and CN Cleavage. Angewandte Chemie - International Edition, 2012, 51, 3948-3952.	7.2	306
15	Pyridinyl Directed Alkenylation with Olefins via Rh(III)-Catalyzed C–C Bond Cleavage of Secondary Arylmethanols. Journal of the American Chemical Society, 2011, 133, 15244-15247.	6.6	293
16	Transition metal-catalyzed direct nucleophilic addition of Câ€"H bonds to carbonâ€"heteroatom double bonds. Chemical Science, 2014, 5, 2146-2159.	3.7	292
17	Cross Dehydrogenative Arylation (CDA) of a Benzylic Cï£;H Bond with Arenes by Iron Catalysis. Angewandte Chemie - International Edition, 2009, 48, 3817-3820.	7.2	290
18	Rhodiumâ€Catalyzed Direct Addition of Aryl CH Bonds to <i>N</i> â€Sulfonyl Aldimines. Angewandte Chemie - International Edition, 2011, 50, 2115-2119.	7.2	262

#	Article	IF	CITATIONS
19	Intra/Intermolecular Direct Allylic Alkylation via Pd(II)-Catalyzed Allylic Câ°'H Activation. Journal of the American Chemical Society, 2008, 130, 12901-12903.	6.6	256
20	Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chemical Society Reviews, 2018, 47, 7078-7115.	18.7	237
21	Recent Advances in Transition-Metal-Catalyzed C–S Activation: From Thioester to (Hetero)aryl Thioether. ACS Catalysis, 2014, 4, 280-288.	5.5	222
22	Cross-Coupling of Alkenyl/Aryl Carboxylates with Grignard Reagent via Fe-Catalyzed Câ^O Bond Activation. Journal of the American Chemical Society, 2009, 131, 14656-14657.	6.6	216
23	Methylation of arenes via Ni-catalyzed aryl C–O/F activation. Chemical Communications, 2008, , 1437.	2.2	199
24	Crossâ€Coupling of Aryl/Alkenyl Pivalates with Organozinc Reagents through Nickelâ€Catalyzed CO Bond Activation under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2008, 47, 10124-10127.	7.2	190
25	Direct Benzylic Alkylation via Ni-Catalyzed Selective Benzylic sp ³ Câ^'O Activation. Journal of the American Chemical Society, 2008, 130, 3268-3269.	6.6	187
26	Palladium-Catalyzed Cross-Coupling of Polyfluoroarenes with Simple Arenes. Organic Letters, 2011, 13, 276-279.	2.4	183
27	Direct Borylation of Primary CH Bonds in Functionalized Molecules by Palladium Catalysis. Angewandte Chemie - International Edition, 2014, 53, 3899-3903.	7.2	181
28	Extrusion of CO from Aryl Ketones: Rhodium(I)â€Catalyzed CC Bond Cleavage Directed by a Pyridine Group. Angewandte Chemie - International Edition, 2012, 51, 2690-2694.	7.2	174
29	Nickel-Catalyzed Efficient and Practical Suzukiâ^'Miyaura Coupling of Alkenyl and Aryl Carbamates with Aryl Boroxines. Organic Letters, 2010, 12, 884-887.	2.4	172
30	Direct Crossâ€Coupling of CH Bonds with Grignard Reagents through Cobalt Catalysis. Angewandte Chemie - International Edition, 2011, 50, 1109-1113.	7.2	165
31	Direct Application of Phenolic Salts to Nickelâ€Catalyzed Crossâ€Coupling Reactions with Aryl Grignard Reagents. Angewandte Chemie - International Edition, 2010, 49, 4566-4570.	7.2	153
32	Synthesis of Dibenzopyranones through Palladiumâ€Catalyzed Directed C–H Activation/Carbonylation of 2â€Arylphenols. Angewandte Chemie - International Edition, 2013, 52, 10598-10601.	7.2	152
33	Silver-catalysed direct amination of unactivated C–H bonds of functionalized molecules. Nature Communications, 2014, 5, 4707.	5 . 8	150
34	Rhodium(I)â€Catalyzed Redoxâ€Economic Crossâ€Coupling of Carboxylic Acids with Arenes Directed by Nâ€Containing Groups. Angewandte Chemie - International Edition, 2013, 52, 2063-2067.	7.2	149
35	Neocuproine–KOtBu promoted intramolecular cross coupling to approach fused rings. Chemical Communications, 2011, 47, 9813.	2.2	146
36	Mutual Activation: Suzuki–Miyaura Coupling through Direct Cleavage of the sp ² CO Bond of Naphtholate. Angewandte Chemie - International Edition, 2011, 50, 7097-7100.	7.2	145

#	Article	lF	CITATIONS
37	Ir-catalyzed highly selective addition of pyridyl C–H bonds to aldehydes promoted by triethylsilane. Chemical Science, 2011, 2, 488-493.	3.7	141
38	<i>N</i> -Directing Group Assisted Rhodium-Catalyzed Aryl C–H Addition to Aryl Aldehydes. Organic Letters, 2012, 14, 636-639.	2.4	138
39	Palladium-Catalyzed Trifluoromethylation of Aromatic C–H Bond Directed by an Acetamino Group. Organic Letters, 2013, 15, 10-13.	2.4	133
40	Pd-Catalyzed Câ^'H Functionalizations of O-Methyl Oximes with Arylboronic Acids. Organic Letters, 2010, 12, 184-187.	2.4	132
41	Direct Imidation to Construct 1 <i>H</i> â€Benzo[<i>d</i>]imidazole through Pd ^{ll} â€Catalyzed CH Activation Promoted by Thiourea. Chemistry - A European Journal, 2009, 15, 7292-7296.	1.7	131
42	Direct Arylation/Alkylation/Magnesiation of Benzyl Alcohols in the Presence of Grignard Reagents via Ni-, Fe-, or Co-Catalyzed sp ³ C–O Bond Activation. Journal of the American Chemical Society, 2012, 134, 14638-14641.	6.6	128
43	Mechanistic understanding of Rh-catalyzed N-sulfonylaldimine insertion into aryl C–H bonds. Chemical Science, 2012, 3, 1634.	3.7	126
44	Upgrading Cross-Coupling Reactions for Biaryl Syntheses. Accounts of Chemical Research, 2019, 52, 161-169.	7.6	126
45	Oxidative dimerization of N-protected and free indole derivatives toward 3,3′-biindoles via Pd-catalyzed direct C–H transformations. Chemical Communications, 2010, 46, 4553.	2.2	116
46	Direct transformation of dinitrogen: synthesis of <i>N</i> containing organic compounds via Nâ^'C bond formation. National Science Review, 2020, 7, 1564-1583.	4.6	114
47	Borylation of Aryl and Alkenyl Carbamates through Niâ€Catalyzed CO Activation. Chemistry - A European Journal, 2011, 17, 786-791.	1.7	112
48	Direct Arylation of Alkenes with Aryl Iodides/Bromides through an Organocatalytic Radical Process. Chemistry - A European Journal, 2011, 17, 10844-10847.	1.7	112
49	Synthesis of Fluorenone Derivatives through Pd-Catalyzed Dehydrogenative Cyclization. Organic Letters, 2012, 14, 4850-4853.	2.4	108
50	Controllable Monoâ€Dialkenylation of Benzyl Thioethers through Rhâ€Catalyzed Aryl CH Activation. Chemistry - A European Journal, 2013, 19, 11898-11903.	1.7	107
51	Olefinic C–H Bond Addition to Aryl Aldehyde and Its N-Sulfonylimine via Rh Catalysis. Organic Letters, 2012, 14, 4498-4501.	2.4	106
52	Direct functionalization of benzylic Câ€"Hs with vinyl acetates via Fe-catalysis. Chemical Communications, 2009, , 6002.	2.2	105
53	Synthesis of Dibenzo[c,e]oxepinâ€5(7 <i>H</i>)â€ones from Benzyl Thioethers and Carboxylic Acids: Rhodiumâ€Catalyzed Double CïŁ¿H Activation Controlled by Different Directing Groups. Angewandte Chemie - International Edition, 2015, 54, 5478-5482.	7.2	101
54	Direct Arylation of Primary and Secondary sp ³ Câ€"H Bonds with Diarylhyperiodonium Salts via Pd Catalysis. Organic Letters, 2013, 15, 4758-4761.	2.4	100

#	Article	IF	Citations
55	LiCl-Promoted Pd(ii)-catalyzed ortho carbonylation of N,N-dimethylbenzylamines. Dalton Transactions, 2010, 39, 10442.	1.6	95
56	Direct oxidative arylation via rhodium-catalyzed C–C bond cleavage of secondary alcohols with arylsilanes. Chemical Science, 2012, 3, 1645.	3.7	94
57	Palladiumâ€Catalyzed C(sp ³)H Activation: A Facile Method for the Synthesis of 3,4â€Dihydroquinolinone Derivatives. Angewandte Chemie - International Edition, 2014, 53, 4945-4949.	7.2	91
58	The Catalytic Ability of Various Transition Metals in the Direct Functionalization of Aromatic CH Bonds. Chemistry - A European Journal, 2011, 17, 3593-3597.	1.7	90
59	Enantioselective Borylation of Aromatic Câ^'H Bonds with Chiral Dinitrogen Ligands. Angewandte Chemie - International Edition, 2017, 56, 7205-7208.	7.2	85
60	Challenges in C–C bond formation through direct transformations of sp2 C–H bonds. Tetrahedron, 2012, 68, 5130-5136.	1.0	82
61	Cross coupling of thioethers with aryl boroxines to construct biaryls via Rh catalyzed C–S activation. Chemical Science, 2013, 4, 1573.	3.7	78
62	Group Exchange between Ketones and Carboxylic Acids through Directing Group Assisted Rh-Catalyzed Reorganization of Carbon Skeletons. Journal of the American Chemical Society, 2015, 137, 5012-5020.	6.6	78
63	Silver-Catalyzed Long-Distance Aryl Migration from Carbon Center to Nitrogen Center. Journal of the American Chemical Society, 2015, 137, 14586-14589.	6.6	77
64	Construction of Polysubstituted Olefins through Ni atalyzed Direct Activation of Alkenyl CO of Substituted Alkenyl Acetates. Chemistry - A European Journal, 2010, 16, 5844-5847.	1.7	74
65	Deoxygenation of Ethers To Form Carbon–Carbon Bonds via Nickel Catalysis. Journal of the American Chemical Society, 2017, 139, 6546-6549.	6.6	72
66	Ni-Catalyzed Cross-Coupling of Dimethyl Aryl Amines with Arylboronic Esters under Reductive Conditions. Journal of the American Chemical Society, 2018, 140, 13575-13579.	6.6	72
67	A Chiral Nitrogen Ligand for Enantioselective, Iridiumâ€Catalyzed Silylation of Aromatic Câ^'H Bonds. Angewandte Chemie - International Edition, 2017, 56, 1092-1096.	7.2	66
68	C–O/C–H Coupling of Polyfluoroarenes with Aryl Carbamates by Cooperative Ni/Cu Catalysis. Organic Letters, 2016, 18, 2548-2551.	2.4	65
69	Palladium catalyzed C(sp ³)–H acetoxylation of aliphatic primary amines to γ-amino alcohol derivatives. Organic Chemistry Frontiers, 2017, 4, 2097-2101.	2.3	65
70	Reductive Cleavage of the CC Bond of Secondary Benzyl Alcohols: Rhodium Catalysis Directed by Nâ€Containing Groups. Angewandte Chemie - International Edition, 2012, 51, 9851-9855.	7.2	64
71	Rhâ€Catalyzed CC Cleavage of Benzyl/Allylic Alcohols to Produce Benzyl/Allylic Amines or other Alcohols by Nucleophilic Addition of Intermediate Rhodacycles to Aldehydes and Imines. Chemistry - A European Journal, 2012, 18, 16214-16225.	1.7	56
72	Palladium-catalyzed base-accelerated direct Câ€"H bond alkenylation of phenols to synthesize coumarin derivatives. Organic Chemistry Frontiers, 2014, 1, 44-49.	2.3	56

#	Article	IF	Citations
73	Direct cross-coupling of benzyl alcohols to construct diarylmethanes via palladium catalysis. Chemical Communications, 2015, 51, 2683-2686.	2.2	56
74	Biaryl Construction through Kumada Coupling with Diaryl Sulfates as One-by-One Electrophiles under Mild Conditions. Organic Letters, 2010, 12, 396-399.	2.4	55
75	Programmed Selective sp ² C–O Bond Activation toward Multiarylated Benzenes. Organic Letters, 2013, 15, 3230-3233.	2.4	55
76	Direct borylation of benzyl alcohol and its analogues in the absence of bases. Organic Chemistry Frontiers, 2015, 2, 1505-1510.	2.3	55
77	Irâ€Catalyzed Câ^H Amidation of Aldehydes with Stoichiometric/Catalytic Directing Group. Chemistry - A European Journal, 2016, 22, 17808-17812.	1.7	54
78	Nickel-Catalyzed Oxidative Coupling of Unactivated C(sp ³)–H Bonds in Aliphatic Amides with Terminal Alkynes. Organometallics, 2017, 36, 18-21.	1.1	54
79	Readily Removable Directing Group Assisted Chemo―and Regioselective C(sp ³)H Activation by Palladium Catalysis. Angewandte Chemie - International Edition, 2015, 54, 13686-13690.	7.2	53
80	Benzylation of arenes through FeCl3-catalyzed Friedel–Crafts reaction via C–O activation of benzyl ether. Tetrahedron Letters, 2008, 49, 4310-4312.	0.7	50
81	Transition-metal-free cross-dehydrogenative alkylation of pyridines under neutral conditions. New Journal of Chemistry, 2013, 37, 1704.	1.4	44
82	Fe-promoted cross coupling of homobenzylic methyl ethers with Grignard reagents via sp3 C–O bond cleavage. Chemical Communications, 2013, 49, 7794.	2.2	43
83	Reigoselective Arylation of Thiazole Derivatives at 5-Position via Pd Catalysis under Ligand-Free Conditions. Organic Letters, 2013, 15, 5774-5777.	2.4	43
84	Development of Modifiable Bidentate Amino Oxazoline Directing Group for Pd atalyzed Arylation of Secondary CH Bonds. Chemistry - A European Journal, 2015, 21, 7389-7393.	1.7	43
85	Cu-Catalyzed Alkynylation of Unactivated C(sp ³)–X Bonds with Terminal Alkynes through Directing Strategy. Organic Letters, 2016, 18, 2040-2043.	2.4	42
86	Practical Cross-Coupling between O-Based Electrophiles and Aryl Bromides via Ni Catalysis. Organic Letters, 2016, 18, 5978-5981.	2.4	41
87	Arylation of α-pivaloxyl ketones with arylboronic reagents via Ni-catalyzed sp3 C–O activation. Chemical Communications, 2011, 47, 7224.	2.2	40
88	Cross-coupling of Aryl/Alkenyl Silyl Ethers with Grignard Reagents through Nickel-catalyzed C–O Bond Activation. Chemistry Letters, 2011, 40, 1001-1003.	0.7	39
89	Construction of Substituted Benzene Rings by Palladiumâ€Catalyzed Direct Crossâ€Coupling of Olefins: A Rapid Synthetic Route to 1,4â€Naphthoquinone and Its Derivatives. Angewandte Chemie - International Edition, 2011, 50, 9926-9930.	7.2	38
90	Diversityâ€Oriented Synthesis through Rhâ€Catalyzed Selective Transformations of a Novel Multirole Directing Group. ChemCatChem, 2015, 7, 2986-2990.	1.8	36

#	Article	IF	Citations
91	Direct alkenyl C–H functionalization of cyclic enamines with carboxylic acids via Rh catalysis assisted by hydrogen bonding. Organic Chemistry Frontiers, 2014, 1, 634-638.	2.3	35
92	Mechanistic Insight into the Regioselective Palladation of Indole Derivatives: Tetranuclear Indolyl Palladacycles with High C2–Pd or C3–Pd Bond Selectivity. Organometallics, 2012, 31, 4397-4400.	1.1	34
93	Aromatic C–H Addition to Ketones: The Effect of Directing Groups. European Journal of Organic Chemistry, 2013, 2013, 6530-6534.	1.2	34
94	Direct Oxidation of Aliphatic C–H Bonds in Amino-Containing Molecules under Transition-Metal-Free Conditions. Organic Letters, 2016, 18, 1234-1237.	2.4	34
95	Palladium-Catalyzed Direct Annulation of Benzoic Acids with Phenols to Synthesize Dibenzopyranones. Organic Letters, 2017, 19, 1326-1329.	2.4	34
96	Enantioselective Borylation of Aromatic Câ^'H Bonds with Chiral Dinitrogen Ligands. Angewandte Chemie, 2017, 129, 7311-7314.	1.6	34
97	Nitrogen fixation and transformation with main group elements. Chemical Society Reviews, 2022, 51, 3846-3861.	18.7	34
98	Controllable mono-/di-alkenylation of aryl alkyl thioethers tuned by oxidants via Pd-catalysis. Organic Chemistry Frontiers, 2014, 1, 1096-1100.	2.3	33
99	Nickelâ•or Ironâ€Catalyzed Crossâ€Coupling of Aryl Carbamates with Arylsilanes. Advanced Synthesis and Catalysis, 2016, 358, 2410-2416.	2.1	33
100	Direct Borylation of Tertiary Anilines via C–N Bond Activation. Organic Letters, 2018, 20, 1995-1998.	2.4	33
101	Cuâ€Catalyzed Intramolecular Amidation of Unactivated C(sp ³)â^'H Bonds To Synthesize Nâ€Substituted Indolines. Chemistry - A European Journal, 2016, 22, 6487-6490.	1.7	27
102	Synthesis of arylamines and N-heterocycles by direct catalytic nitrogenation using N2. Nature Communications, 2021, 12, 248.	5.8	27
103	Oxidative coupling of sp 2 and sp 3 carbon–hydrogen bonds to construct dihydrobenzofurans. Nature Communications, 2017, 8, 238.	5.8	26
104	Nickel catalyzed reduction of arenols under mild conditions. Organic Chemistry Frontiers, 2016, 3, 375-379.	2.3	25
105	Direct amidation of the phenylalanine moiety in short peptides via Pd-catalyzed C–H activation/C–N formation. Organic Chemistry Frontiers, 2015, 2, 51-54.	2.3	24
106	Aliphatic Câ€"H azidation through a peroxydisulfate induced radical pathway. Organic Chemistry Frontiers, 2016, 3, 1326-1330.	2.3	24
107	Fe-Promoted Chlorobenzylation of Terminal Alkynes through Benzylic C(sp ³)–H Bond Functionalization. Organic Letters, 2016, 18, 1238-1241.	2.4	24
108	Recent progress in the oxidative coupling of unactivated Csp ³ –H bonds with other C–H bonds. Chemical Communications, 2021, 57, 13288-13296.	2.2	23

#	Article	IF	CITATIONS
109	Diversified syntheses of multifunctionalized thiazole derivatives via regioselective and programmed C–H activation. Chemical Communications, 2015, 51, 4599-4602.	2.2	21
110	Fragmentation of structural units of lignin promoted by persulfate through selective C–C cleavage under mild conditions. Organic Chemistry Frontiers, 2015, 2, 1066-1070.	2.3	21
111	Photo-induced deep aerobic oxidation of alkyl aromatics. Science China Chemistry, 2021, 64, 1487-1492.	4.2	21
112	Transition Metal Catalyzed Direct Oxidative Borylation of Câ€"H Bonds. Chinese Journal of Chemistry, 2018, 36, 950-954.	2.6	20
113	Fixation of N ₂ into Value-Added Organic Chemicals. ACS Catalysis, 2022, 12, 2898-2906.	5.5	20
114	Methylation of Arenols through Niâ€catalyzed Câ€"O Activation with Methyl Magnesium Bromide. Chinese Journal of Chemistry, 2018, 36, 183-186.	2.6	19
115	Direct Transformation of Arenols Based on C—O Activation. Chinese Journal of Chemistry, 2020, 38, 855-863.	2.6	18
116	Fe(<scp>ii</scp>)-Catalyzed alkenylation of benzylic C–H bonds with diazo compounds. Chemical Communications, 2019, 55, 4047-4050.	2.2	17
117	One stone two birds: construction of polysubstituted benzenes from the same starting material and precatalyst by switching the active sites of catalyst with different additives. Chemical Communications, 2012, 48, 356-358.	2.2	16
118	Direct conversion of N2 and O2: status, challenge and perspective. National Science Review, 2022, 9, .	4.6	16
119	Direct Oxidative Arylation of Aryl CH Bonds with Aryl Boronic Acids via Pd Catalysis Directed by the <i>N</i> , <i>N</i> , i>N, 2015, 10, 840-843.	1.7	13
120	Intramolecular Oxidative Coupling between Unactivated Aliphatic C–H and Aryl C–H Bonds. Organic Letters, 2021, 23, 1251-1257.	2.4	13
121	Synthesis of 4â€haloâ€2 (5 <i>H</i>)â€furanones and their suzukiâ€coupling reactions with organoboronic acids. A general route to 4â€arylâ€2 (5 <i>H</i>) â€furanones. Chinese Journal of Chemistry, 2001, 19, 1280-1284.	2.6	12
122	Silver in C(<i>sp</i> ^{<i>2</i>})â€H Functionalization. ChemCatChem, 2021, 13, 1475-1497.	1.8	12
123	Asymmetric Allylic Alkylation of Alkene through Direct C (sp ³)â€H Functionalization. ChemCatChem, 2013, 5, 1289-1290.	1.8	11
124	Regioâ€Divergent C—H Alkynylation with Janus Directing Strategy via Ir(III) Catalysis. Chinese Journal of Chemistry, 2020, 38, 929-934.	2.6	11
125	Siteâ€Selective C–C Cleavage of Benzocyclobutenones Enabled by a Blocking Strategy Using Nickel Catalysis. Angewandte Chemie - International Edition, 2021, 60, 19079-19084.	7.2	10
126	A Chiral Nitrogen Ligand for Enantioselective, Iridiumâ€Catalyzed Silylation of Aromatic Câ^'H Bonds. Angewandte Chemie, 2017, 129, 1112-1116.	1.6	8

#	Article	IF	CITATIONS
127	Conversion of Carbonyl Compounds to Olefins <i>via</i> Enolate Intermediate. Chinese Journal of Chemistry, 2019, 37, 781-785.	2.6	6
128	Silylamido supported dinitrogen heterobimetallic complexes: syntheses and their catalytic ability. National Science Review, 2021, 8, nwaa290.	4.6	6
129	Skeleton Reorganization of Substituted Benzocyclobutenols through Rh-Catalyzed C–C Bond Cleavage Manipulated by Hydrogen Transfer. Organic Letters, 2021, 23, 7597-7602.	2.4	6
130	Beyond C–H and C–O activation: the evolution of components in cross-coupling reactions. Pure and Applied Chemistry, 2014, 86, 361-372.	0.9	5
131	Privileged strategies for direct transformations of inert aliphatic C–H bonds. National Science Review, 2014, 1, 172-175.	4.6	5
132	Ni and Fe catalyzed cascade radical reactions of oxime esters with diselenides. Organic Chemistry Frontiers, 2022, 9, 3480-3485.	2.3	5
133	Enantioselective CH Activation and Ligand Acceleration with Newly Designed APAQ Ligands. CheM, 2016, 1, 528-530.	5. 8	4
134	Carbon-hydrogen activation in China. Science China Chemistry, 2015, 58, 1245-1248.	4.2	3
135	Inside Cover: Multiple CH Activations To Construct Biologically Active Molecules in a Process Completely Free of Organohalogen and Organometallic Components (Angew. Chem. Int. Ed. 6/2008). Angewandte Chemie - International Edition, 2008, 47, 988-988.	7.2	2
136	A mixed-valent high spin (\hat{l} /4-hydroxo)dicobalt(II/III) complex and its end-on type dioxygen adduct: synthesis, geometric and electronic structure studies. Science China Chemistry, 2021, 64, 1693-1697.	4.2	2