
Maria José Medeiros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2835137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intramolecular reductive cyclisations using electrochemistry: development of environmentally friendly synthetic methodologies. New Journal of Chemistry, 2006, 30, 1534-1548.	2.8	36
2	Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytes. Molecular Crystals and Liquid Crystals, 2017, 643, 266-273.	0.9	20
3	Intramolecular cyclization of propargyl derivatives using environmentally friendly methodologies. Pure and Applied Chemistry, 2001, 73, 1941-1945.	1.9	18
4	Reductive cyclisation of propargyloxy and allyloxy α-bromoester derivatives using environmentally friendly electrochemical methodologies. Green Chemistry, 2006, 8, 380.	9.0	14
5	Radical-type reactions in protic and aprotic media: Comparisons in nickel-catalysed electrochemical reductive cyclisations. Comptes Rendus Chimie, 2009, 12, 889-894.	0.5	14
6	Electrochemical cyclizations of organic halides catalyzed by electrogenerated nickel(I) complexes: towards environmentally friendly methodologies. Electrochimica Acta, 2017, 242, 373-381.	5.2	14
7	Electrochemical Catalytic Cyclization Reactions Using Environmentally Friendly Methodologies. Journal of the Electrochemical Society, 2013, 160, G3112-G3116.	2.9	6
8	Electrochemical Applications of Electrolytes based on Ionic Liquids. ECS Transactions, 2013, 45, 235-244.	0.5	5
9	lonic Liquids for the Electroreductive Radical Cyclization of Unsaturated Bromo Derivatives Catalyzed by Nickel(II) Complexes. Journal of the Electrochemical Society, 2016, 163, G21-G25.	2.9	5
10	Synthesis of Five-Membered Heterocycles by Indirect Electrochemical Approach in "Green―Media. Journal of the Electrochemical Society, 2015, 162, G1-G7.	2.9	2
11	The Study of Electrochemical Cyclisation of Propargyl Derivatives using [Ni(tmc)]Br2 as Catalyst in Microemulsions. ECS Transactions, 2007, 6, 11-15.	0.5	1
12	Catalytic Cyclization of Propargyl Bromoethers via Electrogenerated Nickel(I) Tetramethylcyclam in Ionic Liquids: Water Effects. Journal of the Electrochemical Society, 2019, 166, G17-G24.	2.9	1
13	Reductive Cyclisations using Environmentally Friendly Electrochemical Methodologies. ECS Transactions, 2006, 3, 1-6.	0.5	0
14	Indirect Electrochemical Cyclisation of Bromoalkoxylated Derivatives Using Environmentally Friendly Methodologies. ECS Transactions, 2013, 45, 9-13.	0.5	0
15	The Study of Indirect Electroreductive Cyclization of Propargyl Derivatives Using [Ni(tmc)]Br2 as Catalyst in Ionic Liquids. ECS Transactions, 2014, 61, 51-55.	0.5	0
16	Electrosynthesis of Heterocyclic Compounds by Radical Cyclization in Environmentally Friendly Media. ECS Transactions, 2015, 66, 1-5.	0.5	0