Andrés Pizzorno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2834877/publications.pdf Version: 2024-02-01

ΔΝΟΟΔΩς ΡΙΖΖΟΡΝΟ

#	Article	IF	CITATIONS
1	Influenza virus resistance to neuraminidase inhibitors. Antiviral Research, 2013, 98, 174-185.	1.9	300
2	Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature, 2020, 585, 584-587.	13.7	287
3	Characterization and Treatment of SARS-CoV-2 in Nasal and Bronchial Human Airway Epithelia. Cell Reports Medicine, 2020, 1, 100059.	3.3	188
4	Timing of Antiviral Treatment Initiation is Critical to Reduce SARSâ€CoVâ€2 Viral Load. CPT: Pharmacometrics and Systems Pharmacology, 2020, 9, 509-514.	1.3	170
5	Generation and Characterization of Recombinant Pandemic Influenza A(H1N1) Viruses Resistant to Neuraminidase Inhibitors. Journal of Infectious Diseases, 2011, 203, 25-31.	1.9	136
6	In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Research, 2020, 181, 104878.	1.9	114
7	Drug Repurposing Approaches for the Treatment of Influenza Viral Infection: Reviving Old Drugs to Fight Against a Long-Lived Enemy. Frontiers in Immunology, 2019, 10, 531.	2.2	95
8	Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. Journal of Experimental Medicine, 2021, 218, .	4.2	85
9	Role of Permissive Neuraminidase Mutations in Influenza A/Brisbane/59/2007-like (H1N1) Viruses. PLoS Pathogens, 2011, 7, e1002431.	2.1	71
10	Influenza Drug Resistance. Seminars in Respiratory and Critical Care Medicine, 2011, 32, 409-422.	0.8	69
11	Structural insight into SARS-CoV-2 neutralizing antibodies and modulation of syncytia. Cell, 2021, 184, 3192-3204.e16.	13.5	68
12	Impact of Mutations at Residue I223 of the Neuraminidase Protein on the Resistance Profile, Replication Level, and Virulence of the 2009 Pandemic Influenza Virus. Antimicrobial Agents and Chemotherapy, 2012, 56, 1208-1214.	1.4	53
13	Impact of Potential Permissive Neuraminidase Mutations on Viral Fitness of the H275Y Oseltamivir-Resistant Influenza A(H1N1)pdm09 Virus <i>In Vitro</i> , in Mice and in Ferrets. Journal of Virology, 2014, 88, 1652-1658.	1.5	44
14	Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures. Frontiers in Immunology, 2019, 10, 60.	2.2	44
15	SARS-CoV-2 viral dynamics in non-human primates. PLoS Computational Biology, 2021, 17, e1008785.	1.5	41
16	The 2009 Pandemic H1N1 D222G Hemagglutinin Mutation Alters Receptor Specificity and Increases Virulence in Mice but Not in Ferrets. Journal of Infectious Diseases, 2011, 204, 1008-1016.	1.9	38
17	Characterization of cellular transcriptomic signatures induced by different respiratory viruses in human reconstituted airway epithelia. Scientific Reports, 2019, 9, 11493.	1.6	33
18	Influenza infection rewires energy metabolism and induces browning features in adipose cells and tissues. Communications Biology, 2020, 3, 237.	2.0	30

Andrés Pizzorno

#	Article	IF	CITATIONS
19	Antiviral Properties of the NSAID Drug Naproxen Targeting the Nucleoprotein of SARS-CoV-2 Coronavirus. Molecules, 2021, 26, 2593.	1.7	29
20	Evolution of Oseltamivir Resistance Mutations in Influenza A(H1N1) and A(H3N2) Viruses during Selection in Experimentally Infected Mice. Antimicrobial Agents and Chemotherapy, 2014, 58, 6398-6405.	1.4	26
21	OVX836 a recombinant nucleoprotein vaccine inducing cellular responses and protective efficacy against multiple influenza A subtypes. Npj Vaccines, 2019, 4, 4.	2.9	25
22	Treatments for COVID-19: Lessons from 2020 and new therapeutic options. Current Opinion in Pharmacology, 2022, 62, 43-59.	1.7	23
23	Toll-like receptor 5 agonist flagellin reduces influenza A virus replication independently of type I interferon and interleukin 22 and improves antiviral efficacy of oseltamivir. Antiviral Research, 2019, 168, 28-35.	1.9	19
24	COVID-19, Influenza and RSV: Surveillance-informed prevention and treatment – Meeting report from an isirv-WHO virtual conference. Antiviral Research, 2022, 197, 105227.	1.9	19
25	Therapeutic Activity of Intramuscular Peramivir in Mice Infected with a Recombinant Influenza A/WSN/33 (H1N1) Virus Containing the H275Y Neuraminidase Mutation. Antimicrobial Agents and Chemotherapy, 2012, 56, 4375-4380.	1.4	16
26	In Vitro Combinations of Baloxavir Acid and Other Inhibitors against Seasonal Influenza A Viruses. Viruses, 2020, 12, 1139.	1.5	16
27	Evaluation of Recombinant 2009 Pandemic Influenza A (H1N1) Viruses Harboring Zanamivir Resistance Mutations in Mice and Ferrets. Antimicrobial Agents and Chemotherapy, 2013, 57, 1784-1789.	1.4	15
28	Influenza A viruses alter the stability and antiviral contribution of host E3-ubiquitin ligase Mdm2 during the time-course of infection. Scientific Reports, 2018, 8, 3746.	1.6	15
29	Role of p53/NF-Î⁰B functional balance in respiratory syncytial virus-induced inflammation response. Journal of General Virology, 2018, 99, 489-500.	1.3	15
30	Molnupiravir combined with different repurposed drugs further inhibits SARS-CoV-2 infection in human nasal epithelium in vitro. Biomedicine and Pharmacotherapy, 2022, 150, 113058.	2.5	15
31	Permissive changes in the neuraminidase play a dominant role in improving the viral fitness of oseltamivir-resistant seasonal influenza A(H1N1) strains. Antiviral Research, 2015, 114, 57-61.	1.9	14
32	The E119D neuraminidase mutation identified in a multidrug-resistant influenza A(H1N1)pdm09 isolate severely alters viral fitness inÂvitro and in animal models. Antiviral Research, 2016, 132, 6-12.	1.9	14
33	Oseltamivir–zanamivir combination therapy is not superior to zanamivir monotherapy in mice infected with influenza A(H3N2) and A(H1N1)pdm09 viruses. Antiviral Research, 2014, 105, 54-58.	1.9	13
34	Human metapneumovirus activates NOD-like receptor protein 3 inflammasome via its small hydrophobic protein which plays a detrimental role during infection in mice. PLoS Pathogens, 2019, 15, e1007689.	2.1	13
35	Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathogens, 2021, 17, e1010106.	2.1	12
36	Molecular detection and genetic variability of human metapneumovirus in Uruguay. Journal of Medical Virology, 2010, 82, 861-865.	2.5	10

#	Article	IF	CITATIONS
37	Strain-Dependent Impact of G and SH Deletions Provide New Insights for Live-Attenuated HMPV Vaccine Development. Vaccines, 2019, 7, 164.	2.1	10
38	The combination of oseltamivir with azithromycin does not show additional benefits over oseltamivir monotherapy in mice infected with influenza A(H1N1)pdm2009 virus. Journal of Medical Virology, 2017, 89, 2239-2243.	2.5	9
39	Flagellin From Pseudomonas aeruginosa Modulates SARS-CoV-2 Infectivity in Cystic Fibrosis Airway Epithelial Cells by Increasing TMPRSS2 Expression. Frontiers in Immunology, 2021, 12, 714027.	2.2	9
40	Human Respiratory Syncytial Virus-Induced Immune Signature of Infection Revealed by Transcriptome Analysis of Clinical Pediatric Nasopharyngeal Swab Samples. Journal of Infectious Diseases, 2021, 223, 1052-1061.	1.9	6
41	Avian Cell Line DuckCelt®-T17 Is an Efficient Production System for Live-Attenuated Human Metapneumovirus Vaccine Candidate Metavac®. Vaccines, 2021, 9, 1190.	2.1	6
42	Transcriptional Profiling of Immune and Inflammatory Responses in the Context of SARS-CoV-2 Fungal Superinfection in a Human Airway Epithelial Model. Microorganisms, 2020, 8, 1974.	1.6	4