Ashish Ranjan Dwivedi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2834840/publications.pdf

Version: 2024-02-01

840776 996975 15 469 11 15 citations h-index g-index papers 15 15 15 671 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Current Medicinal Chemistry, 2022, 29, 1757-1803.	2.4	12
2	Morpholine substituted quinazoline derivatives as anticancer agents against MCF-7, A549 and SHSY-5Y cancer cell lines and mechanistic studies. RSC Medicinal Chemistry, 2022, 13, 599-609.	3.9	11
3	Advancements in the development of multi-target directed ligands for the treatment of Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2022, 61, 116742.	3.0	37
4	Design, Synthesis, and Pharmacological Evaluation of <i>N</i> -Propargylated Diphenylpyrimidines as Multitarget Directed Ligands for the Treatment of Alzheimer's Disease. ACS Chemical Neuroscience, 2022, 13, 2122-2139.	3.5	16
5	Design, synthesis and evaluation of 4-phenyl-1,2,3-triazole substituted pyrimidine derivatives as antiproliferative and tubulin polymerization inhibitors. Journal of Molecular Structure, 2022, 1267, 133592.	3.6	7
6	Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Different Disease States: Recent Updates. Current Medicinal Chemistry, 2021, 28, 3193-3215.	2.4	21
7	Design, Synthesis and Evaluation of O â€Pentyne Substituted Diphenylpyrimidines as Monoamine Oxidase and Acetylcholinesterase Inhibitors. ChemistrySelect, 2020, 5, 8021-8032.	1.5	9
8	Anti-proliferative potential of triphenyl substituted pyrimidines against MDA-MB-231, HCT-116 and HT-29 cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127468.	2.2	13
9	Targeting Cancer Stem Cells Pathways for the Effective Treatment of Cancer. Current Drug Targets, 2020, 21, 258-278.	2.1	18
10	Dipropargyl substituted diphenylpyrimidines as dual inhibitors of monoamine oxidase and acetylcholinesterase. European Journal of Medicinal Chemistry, 2019, 177, 221-234.	5.5	56
11	4,6-Diphenylpyrimidine Derivatives as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 252-265.	3.5	53
12	Synthesis, Biological Evaluation and Molecular Modeling Studies of Propargylâ€Containing 2,4,6â€Trisubstituted Pyrimidine Derivatives as Potential Antiâ€Parkinson Agents. ChemMedChem, 2018, 13, 705-712.	3.2	29
13	Recent Synthetic Strategies for Monocyclic Azole Nucleus and Its Role in Drug Discovery and Development. Current Organic Synthesis, 2018, 15, 321-340.	1.3	17
14	Recent Developments on 1,2,4-Triazole Nucleus in Anticancer Compounds: A Review. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16, 465-489.	1.7	165
15	Regioselective alkylation of 1,2,4-triazole using ionic liquids under microwave conditions. Green Processing and Synthesis, 2016, 5, 233-237.	3.4	5