Andreas Eschenbacher

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2834807/andreas-eschenbacher-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28
papers

259
citations

9
h-index

29
ext. papers

7.3
avg, IF

15
g-index

3.7
L-index

#	Paper	IF	Citations
28	Study of the degradation of epoxy resins used in spacecraft components by thermogravimetry and fast pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2022 , 161, 105397	6	1
27	A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic waste composition. <i>Fuel Processing Technology</i> , 2022 , 227, 107090	7.2	13
26	A detailed experimental and kinetic modeling study on pyrolysis and oxidation of oxymethylene ether-2 (OME-2). <i>Combustion and Flame</i> , 2022 , 238, 111914	5.3	2
25	Maximizing light olefins and aromatics as high value base chemicals via single step catalytic conversion of plastic waste. <i>Chemical Engineering Journal</i> , 2022 , 428, 132087	14.7	9
24	Highly selective conversion of mixed polyolefins to valuable base chemicals using phosphorus-modified and steam-treated mesoporous HZSM-5 zeolite with minimal carbon footprint. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121251	21.8	1
23	Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter. <i>Science of the Total Environment</i> , 2022 , 838, 156092	10.2	2
22	Fast pyrolysis of polyurethanes and polyisocyanurate with and without flame retardant: Compounds of interest for chemical recycling. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 160, 10	5374	2
21	Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate?. <i>Waste Management</i> , 2021 , 138, 83-115	8.6	11
20	Pyrolysis of end-of-life polystyrene in a pilot-scale reactor: Maximizing styrene production <i>Waste Management</i> , 2021 , 139, 85-95	8.6	5
19	Boron-Modified Mesoporous ZSM-5 for the Conversion of Pyrolysis Vapors from LDPE and Mixed Polyolefins: Maximizing the C2 [14 Olefin Yield with Minimal Carbon Footprint. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 14618-14630	8.3	4
18	Primary Thermal Decomposition Pathways of Hydroxycinnamaldehydes. <i>Energy & Decomposition Pathways</i> of Hydroxycinnamaldehydes. <i>Energy & Decomposition Path</i>	4.1	3
17	Catalytic conversion of acetol over HZSM-5 catalysts [Influence of Si/Al ratio and introduction of mesoporosity. <i>Catalysis Today</i> , 2021 , 365, 301-309	5.3	4
16	Fluid catalytic co-processing of bio-oils with petroleum intermediates: Comparison of vapour phase low pressure hydrotreating and catalytic cracking as pretreatment. <i>Fuel</i> , 2021 , 302, 121198	7.1	6
15	Detailed characterization of sulfur compounds in fast pyrolysis bio-oils using GC IGC-SCD and GCIMS. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 159, 105288	6	2
14	Decomposition of carbon/phenolic composites for aerospace heatshields: Detailed speciation of phenolic resin pyrolysis products. <i>Aerospace Science and Technology</i> , 2021 , 119, 107079	4.9	8
13	Insights into the scalability of catalytic upgrading of biomass pyrolysis vapors using micro and bench-scale reactors. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 3780-3796	5.8	7
12	Enhancing bio-oil quality and energy recovery by atmospheric hydrodeoxygenation of wheat straw pyrolysis vapors using Pt and Mo-based catalysts. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 1991-2008	5.8	30

LIST OF PUBLICATIONS

11	gasifier for production of liquid bio-fuels in a polygeneration scheme. <i>Energy Conversion and Management</i> , 2020 , 207, 112538	10.6	7
10	Deoxygenation of wheat straw fast pyrolysis vapors over Na-Al2O3 catalyst for production of bio-oil with low acidity. <i>Chemical Engineering Journal</i> , 2020 , 394, 124878	14.7	21
9	Co-processing of wood and wheat straw derived pyrolysis oils with FCC feed P roduct distribution and effect of deoxygenation. <i>Fuel</i> , 2020 , 260, 116312	7.1	11
8	Micro-pyrolyzer screening of hydrodeoxygenation catalysts for efficient conversion of straw-derived pyrolysis vapors. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 150, 104868	6	6
7	Performance-screening of metal-impregnated industrial HZSM-5/EAl2O3 extrudates for deoxygenation and hydrodeoxygenation of fast pyrolysis vapors. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 150, 104892	6	7
6	Counteracting Rapid Catalyst Deactivation by Concomitant Temperature Increase during Catalytic Upgrading of Biomass Pyrolysis Vapors Using Solid Acid Catalysts. <i>Catalysts</i> , 2020 , 10, 748	4	5
5	Performance of mesoporous HZSM-5 and Silicalite-1 coated mesoporous HZSM-5 catalysts for deoxygenation of straw fast pyrolysis vapors. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 145, 1047	792	12
4	Deoxygenation of Wheat Straw Fast Pyrolysis Vapors using HZSM-5, Al2O3, HZSM-5/Al2O3 Extrudates, and Desilicated HZSM-5/Al2O3 Extrudates. <i>Energy & amp; Fuels</i> , 2019 , 33, 6405-6420	4.1	22
3	Catalytic deoxygenation of vapors obtained from ablative fast pyrolysis of wheat straw using mesoporous HZSM-5. <i>Fuel Processing Technology</i> , 2019 , 194, 106119	7.2	24
2	Impact of ZSM-5 Deactivation on Bio-Oil Quality during Upgrading of Straw Derived Pyrolysis Vapors. <i>Energy & Description</i> 2019, 33, 397-412	4.1	31
1	A Review of Recent Research on Catalytic Biomass Pyrolysis and Low-Pressure Hydropyrolysis. <i>Energy & Description of the Energy & Description </i>	4.1	3