Chih-Wen Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2834649/publications.pdf

Version: 2024-02-01

		1040056	1199594
12	447	9	12
papers	citations	h-index	g-index
18	18	18	641
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chambers for Culturing and Immobilizing <i>Xenopus</i> Embryos and Organotypic Explants for Live Imaging. Cold Spring Harbor Protocols, 2022, 2022, pdb.prot107649.	0.3	3
2	Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in <i>Xenopus</i> ectoderm. Development (Cambridge), 2022, 149, .	2.5	13
3	From biomechanics to mechanobiology: Xenopus provides direct access to the physical principles that shape the embryo. Current Opinion in Genetics and Development, 2020, 63, 71-77.	3.3	11
4	The Ajuba LIM protein Wtip regulates actomyosin contractility during vertebrate neural tube closure. Journal of Cell Science, 2018, 131, .	2.0	16
5	Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Scientific Reports, 2016, 6, 24104.	3.3	29
6	Wnt proteins can direct planar cell polarity in vertebrate ectoderm. ELife, 2016, 5, .	6.0	62
7	The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Developmental Biology, 2015, 408, 316-327.	2.0	43
8	Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development (Cambridge), 2015, 142, 99-107.	2.5	51
9	Lulu Regulates Shroom-Induced Apical Constriction during Neural Tube Closure. PLoS ONE, 2013, 8, e81854.	2.5	28
10	A novel acetylation of \hat{l}^2 -tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Molecular Biology of the Cell, 2011, 22, 448-456.	2.1	102
11	Afi1p Functions as an Arf3p Polarization-specific Docking Factor for Development of Polarity. Journal of Biological Chemistry, 2008, 283, 16915-16927.	3.4	12
12	The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner. Journal of Cell Biology, 2007, 177, 587-597.	5.2	74