Josef KaÅjlÃ-k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2834072/publications.pdf Version: 2024-02-01

Ιοςεε ΚλΔιί Δκ

#	Article	IF	CITATIONS
1	Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylene. Environmental Science & Technology, 2022, 56, 4425-4436.	10.0	30
2	Silica-supported Fe/Fe–O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nature Catalysis, 2022, 5, 20-29.	34.4	65
3	Sulfidated nano-scale zerovalent iron is able to effectively reduce in situ hexavalent chromium in a contaminated aquifer. Journal of Hazardous Materials, 2021, 405, 124665.	12.4	42
4	Crystal Structure―and Morphologyâ€Ðriven Electrochemistry of Iron Oxide Nanoparticles in Hydrogen Peroxide Detection. Advanced Materials Interfaces, 2019, 6, 1801549.	3.7	10
5	Thermally reduced fluorographenes as efficient electrode materials for supercapacitors. Nanoscale, 2019, 11, 21364-21375.	5.6	15
6	Carboxymethylcellulose-based magnetic Au or Ag nanosystems: Eminent candidates in catalysis, sensing applications based on SERS, and electrochemistry. Applied Materials Today, 2019, 14, 143-150.	4.3	13
7	Nanoarchitecture of advanced core-shell zero-valent iron particles with controlled reactivity for contaminant removal. Chemical Engineering Journal, 2018, 354, 335-345.	12.7	30
8	Pharmaceuticals, benzene, toluene and chlorobenzene removal from contaminated groundwater by combined UV/H 2 O 2 photo-oxidation and aeration. Water Research, 2017, 120, 245-255.	11.3	49
9	A simple high-yield synthesis of high-purity HÃǥg carbide (χ-Fe ₅ C ₂) nanoparticles with extraordinary electrochemical properties. Nanoscale, 2017, 9, 10440-10446.	5.6	20
10	Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes. Scientific Reports, 2017, 7, 11585.	3.3	44
11	Iron oxalate decomposition process by means of Mössbauer spectroscopy and nuclear forward scattering. AIP Conference Proceedings, 2016, , .	0.4	5
12	Zero-Valent Iron Nanoparticles with Unique Spherical 3D Architectures Encode Superior Efficiency in Copper Entrapment. ACS Sustainable Chemistry and Engineering, 2016, 4, 2748-2753.	6.7	7
13	Magnetic ground state of nanosized β-Fe ₂ O ₃ and its remarkable electronic features. RSC Advances, 2015, 5, 49719-49727.	3.6	20
14	The effect of neodymium substitution on the structural and magnetic properties of nickel ferrite. Progress in Natural Science: Materials International, 2015, 25, 215-221.	4.4	36
15	Thermally-induced solid state transformation of βâ€Fe2O3 nanoparticles in various atmospheres. AIP Conference Proceedings, 2014, , .	0.4	8
16	Core–shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst. Biosensors and Bioelectronics, 2014, 52, 159-165.	10.1	46
17	Iron(II,III)–Polyphenol Complex Nanoparticles Derived from Green Tea with Remarkable Ecotoxicological Impact. ACS Sustainable Chemistry and Engineering, 2014, 2, 1674-1680.	6.7	122
18	Magnetically Assisted Surface-Enhanced Raman Scattering Selective Determination of Dopamine in an Artificial Cerebrospinal Fluid and a Mouse Striatum Using Fe ₃ O ₄ /Ag Nanocomposite. Analytical Chemistry, 2014, 86, 2939-2946.	6.5	77

Josef KaÅilÃk

#	Article	IF	CITATIONS
19	Space weathering simulations through controlled growth of iron nanoparticles on olivine. Icarus, 2014, 237, 75-83.	2.5	38
20	Surfactant-Derived Amphiphilic Carbon Dots with Tunable Photoluminescence. Journal of Physical Chemistry C, 2013, 117, 24991-24996.	3.1	117
21	Mixtures of l-Amino Acids as Reaction Medium for Formation of Iron Nanoparticles: The Order of Addition into a Ferrous Salt Solution Matters. International Journal of Molecular Sciences, 2013, 14, 19452-19473.	4.1	9
22	MoÌ^ssbauer study of transformation of Fe cations during thermal treatment of glauconite in air. AIP Conference Proceedings, 2012, , .	0.4	2
23	Laser-induced transformations of zero-valent iron particles. , 2012, , .		4
24	Thermally induced solid-state route toward magnetite nanoparticles with controlled stoichiometry. , 2012, , .		0