
Rouslan I Moustafine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2833717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interpolyelectrolyte complexes based on Carbopol and oppositely charged polymer as new carriers for oral controlled diclofenac delivery. Polymers for Advanced Technologies, 2021, 32, 2744.	3.2	2
2	Interpolymer Complexes Based on Carbopol [®] and Poly(2-ethyl-2-oxazoline) as Carriers for Buccal Delivery of Metformin. Drug Development and Registration, 2021, 10, 48-55.	0.6	4
3	Comparative evaluation study of polycomplex carriers based on Eudragit® <scp>EPO</scp> / <scp>S100</scp> copolymers prepared in different media. Polymers for Advanced Technologies, 2021, 32, 2761-2769.	3.2	2
4	Mucoadhesive and mucus-penetrating interpolyelectrolyte complexes for nose-to-brain drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102432.	3.3	19
5	Hybrid Nanoparticles for Haloperidol Encapsulation: Quid Est Optimum?. Polymers, 2021, 13, 4189.	4.5	3
6	Interpolymer Complexes of Eudragit® Copolymers as Novel Carriers for Colon-Specific Drug Delivery. Polymers, 2020, 12, 1459.	4.5	18
7	PEGylated Systems in Pharmaceutics. Polymer Science - Series C, 2020, 62, 62-74.	1.7	15
8	Conjugation of haloperidol to PEG allows peripheral localisation of haloperidol and eliminates CNS extrapyramidal effects. Journal of Controlled Release, 2020, 322, 227-235.	9.9	8
9	Gellan gum and its methacrylated derivatives as in situ gelling mucoadhesive formulations of pilocarpine: In vitro and in vivo studies. International Journal of Pharmaceutics, 2020, 577, 119093.	5.2	50
10	ЕStudy of Haloperidol Release from Polycomplex Nanoparticles Based on Eudragit [®] Copolymers. Drug Development and Registration, 2020, 9, 45-50.	0.6	1
11	Acrylated Eudragit® E PO as a novel polymeric excipient with enhanced mucoadhesive properties for application in nasal drug delivery. International Journal of Pharmaceutics, 2019, 562, 241-248.	5.2	40
12	Interpolymer complexes of carbopol® 971 and poly(2-ethyl-2-oxazoline): Physicochemical studies of complexation and formulations for oral drug delivery. International Journal of Pharmaceutics, 2019, 558, 53-62.	5.2	19
13	Design and production of hybrid nanoparticles with polymeric-lipid shell–core structures: conventional and next-generation approaches. RSC Advances, 2018, 8, 34614-34624.	3.6	20
14	Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems. European Journal of Pharmaceutical Sciences, 2018, 121, 16-28.	4.0	49
15	Mucoadhesive Interpolyelectrolyte Complexes for the Buccal Delivery of Clobetasol. Polymers, 2018, 10, 85.	4.5	30
16	Indomethacin-containing interpolyelectrolyte complexes based on Eudragit ® E PO/S 100 copolymers as a novel drug delivery system. International Journal of Pharmaceutics, 2017, 524, 121-133.	5.2	30
17	Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method. International Journal of Pharmaceutics, 2017, 518, 50-58.	5.2	35
18	Crown Ethers: Novel Permeability Enhancers for Ocular Drug Delivery?. Molecular Pharmaceutics, 2017, 14, 3528-3538.	4.6	47

#	Article	IF	CITATIONS
19	Ultrasonic atomization and polyelectrolyte complexation to produce gastroresistant shell–core microparticles. Journal of Applied Polymer Science, 2016, 133, .	2.6	15
20	Comparative Study of Polycomplexes Based on Carbopol® and Oppositely Charged Polyelectrolytes as a New Oral Drug Delivery System. Pharmaceutical Chemistry Journal, 2015, 49, 1-6.	0.8	17
21	Role of macromolecular interactions of pharmaceutically acceptable polymers in functioning oral drug delivery systems. Russian Journal of General Chemistry, 2014, 84, 364-367.	0.8	7
22	Eudragit E PO as a Complementary Material for Designing Oral Drug Delivery Systems with Controlled Release Properties: Comparative Evaluation of New Interpolyelectrolyte Complexes with Countercharged Eudragit L100 Copolymers. Molecular Pharmaceutics, 2013, 10, 2630-2641.	4.6	40
23	Comparative evaluation of new carriers for controlled drug delivery based on Eudragit EPO/L100 interpolyelectrolyte complexes. Pharmaceutical Chemistry Journal, 2012, 46, 507-511.	0.8	2
24	Drug release modification by interpolymer interaction between countercharged types of Eudragit® RL 30D and FS 30D in double-layer films. International Journal of Pharmaceutics, 2012, 439, 17-21.	5.2	25
25	Interpolymer interaction between countercharged types of Eudragit® RL30D and FS30D in binary films as a method of drug release modification in oral delivery systems. Pharmaceutical Chemistry Journal, 2012, 46, 45-49.	0.8	5
26	Comparative study of structural and compositional changes of polycomplex matrices based on Eudragit® EPO and Eudragit® L100. Pharmaceutical Chemistry Journal, 2011, 45, 114-117.	0.8	2
27	Interpolymer combinations of chemically complementary grades of Eudragit copolymers: a new direction in the design of peroral solid dosage forms of drug delivery systems with controlled release (review). Pharmaceutical Chemistry Journal, 2011, 45, 285.	0.8	39
28	Biopharmaceutical assessment of a polycomplex matrix system based on carbomer 940 and Eudragit® EPO for colon-specific drug delivery. Pharmaceutical Chemistry Journal, 2011, 45, 491-494.	0.8	10
29	Synthesis and characterization of a new carrier based on Eudragit® EPO/S100 interpolyelectrolyte complex for controlled colon-specific drug delivery. Pharmaceutical Chemistry Journal, 2011, 45, 568-574.	0.8	16
30	Structural Transformations During Swelling of Polycomplex Matrices Based on Countercharged (meth)acrylate Copolymers (EudragitR EPO/EudragitR L 100-55). Journal of Pharmaceutical Sciences, 2011, 100, 874-885.	3.3	26
31	Diffusion-transport properties of a polycomplex matrix system based on eudragit® EPO and Carbomer 940. Pharmaceutical Chemistry Journal, 2010, 44, 147-150.	0.8	11
32	Synthesis and physicochemical evaluation of a new carrier based on an interpolyelectrolyte complex formed by Eudragit® EPO and Carbomer 940. Pharmaceutical Chemistry Journal, 2010, 44, 271-273.	0.8	9
33	Potential carriers for controlled drug release based on interpolyelectrolyte complexes using Eudragit® types EPO and L100-55. I. Synthesis and comparative physicochemical evaluation. Pharmaceutical Chemistry Journal, 2010, 44, 319-323.	0.8	5
34	Potential carriers for controlled drug delivery based on Eudragit® EPO/L100 – 55 interpolyelectrolyte complexes. part 2: comparative evaluation of diffusion transport properties. Pharmaceutical Chemistry Journal, 2010, 44, 391-395.	0.8	4
35	Interpolyelectrolyte complexes of Eudragit® E PO with sodium alginate as potential carriers for colonic drug delivery: monitoring of structural transformation and composition changes during swellability and release evaluating. Drug Development and Industrial Pharmacy, 2009, 35, 1439-1451.	2.0	38
36	Comparative evaluation of interpolyelectrolyte complexes of chitosan with Eudragit® L100 and Eudragit® L100-55 as potential carriers for oral controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 2008, 70, 215-225	4.3	81

#	Article	IF	CITATIONS
37	Physicochemical characterization and drug release properties of Eudragit® E PO/Eudragit® L 100-55 interpolyelectrolyte complexes. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 26-36.	4.3	108
38	Modification of chitosan by inclusion into interpolyelectrolyte complex with Eudragit L. Pharmaceutical Chemistry Journal, 2006, 40, 325-328.	0.8	4
39	Design of new polymer carriers based of Eudragit® E PO/Eudragit® L100-55 interpolyelectrolyte complexes using swellability measurements. Journal of Controlled Release, 2006, 116, e35-e36.	9.9	15
40	Characteristics of interpolyelectrolyte complexes of Eudragit E 100 with sodium alginate. International Journal of Pharmaceutics, 2005, 294, 113-120.	5.2	62
41	Characteristics of interpolyelectrolyte complexes of Eudragit E100 with Eudragit L100. Journal of Controlled Release, 2005, 103, 191-198.	9.9	71
42	Eudragit E Modified by Inclusion Into an Interpolyelectrolyte Complex. Pharmaceutical Chemistry Journal, 2005, 39, 39-42.	0.8	2
43	Diffusion Transport Properties of Polymeric Complex Matrix Systems Based on Eudragit E100 and L100 Copolymers. Pharmaceutical Chemistry Journal, 2005, 39, 89-93.	0.8	10
44	Diffusion transport in interpolyelectrolyte matrix systems based on chitosan and Eudragit L100. Pharmaceutical Chemistry Journal, 2005, 39, 663-666.	0.8	3
45	Diffusion Transport Properties of Polymeric Complex Matrix Systems Based on Eudragit E and Sodium Alginate. Pharmaceutical Chemistry Journal, 2004, 38, 456-458.	0.8	3
46	Synthesis and characterization of an interpolyelectrolyte complex based on Eudragit E100 and L100 copolymers. Pharmaceutical Chemistry Journal, 2004, 38, 625-627.	0.8	6