Henrik Clausen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2833330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO Journal, 2013, 32, 1478-1488.	7.8	1,130
2	Molecular genetic basis of the histo-blood group ABO system. Nature, 1990, 345, 229-233.	27.8	1,079
3	Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology, 2012, 22, 736-756.	2.5	670
4	Glycosyltransferase activity of Fringe modulates Notch–Delta interactions. Nature, 2000, 406, 411-415.	27.8	652
5	Global view of human protein glycosylation pathways and functions. Nature Reviews Molecular Cell Biology, 2020, 21, 729-749.	37.0	560
6	ABH and Related Histoâ€Blood Group Antigens; Immunochemical Differences in Carrier Isotypes and Their Distribution ¹ . Vox Sanguinis, 1989, 56, 1-20.	1.5	504
7	Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity, 2016, 44, 1444-1454.	14.3	458
8	Polypeptide GalNAc-transferase T3 and Familial Tumoral Calcinosis. Journal of Biological Chemistry, 2006, 281, 18370-18377.	3.4	360
9	Mining the O-glycoproteome using zinc-finger nuclease–glycoengineered SimpleCell lines. Nature Methods, 2011, 8, 977-982.	19.0	312
10	Substrate Specificities of Three Members of the Human UDP-N-Acetyl-α-d-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase Family, GalNAc-T1, -T2, and -T3. Journal of Biological Chemistry, 1997, 272, 23503-23514.	3.4	279
11	Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 546-563.	2.4	266
12	Bacterial glycosidases for the production of universal red blood cells. Nature Biotechnology, 2007, 25, 454-464.	17.5	259
13	A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Clycobiology, 1996, 6, 635-646.	2.5	253
14	Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proceedings of the United States of America, 2014, 111, E4066-75.	7.1	251
15	Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology, 2006, 16, 96-107.	2.5	233
16	Cancer Biomarkers Defined by Autoantibody Signatures to Aberrant O-Glycopeptide Epitopes. Cancer Research, 2010, 70, 1306-1313.	0.9	227
17	Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nature Biotechnology, 2015, 33, 842-844.	17.5	213
18	The ST6GalNAc-I Sialyltransferase Localizes throughout the Golgi and Is Responsible for the Synthesis of the Tumor-associated Sialyl-Tn O-Glycan in Human Breast Cancer. Journal of Biological Chemistry, 2006, 281, 3586-3594.	3.4	210

#	Article	IF	CITATIONS
19	cDNA Cloning and Expression of a Novel Human UDPacetyl-α-D-galactosamine. Journal of Biological Chemistry, 1996, 271, 17006-17012.	3.4	203
20	Role of the Human ST6GalNAc-I and ST6GalNAc-II in the Synthesis of the Cancer-Associated Sialyl-Tn Antigen. Cancer Research, 2004, 64, 7050-7057.	0.9	203
21	Location, location, location: new insights into O-GalNAc protein glycosylation. Trends in Cell Biology, 2011, 21, 149-158.	7.9	200
22	Cloning of a Human UDP-N-Acetyl-α-d-Galactosamine:PolypeptideN-Acetylgalactosaminyltransferase That Complements Other GalNAc-Transferases in Complete O-Glycosylation of the MUC1 Tandem Repeat. Journal of Biological Chemistry, 1998, 273, 30472-30481.	3.4	196
23	An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Molecular Cell, 2019, 75, 394-407.e5.	9.7	181
24	A Family of Human β3-Galactosyltransferases. Journal of Biological Chemistry, 1998, 273, 12770-12778.	3.4	175
25	Immunohistochemical study of MUC5AC expression in human gastric carcinomas using a novel monoclonal antibody. , 1997, 74, 112-121.		172
26	Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology, 2007, 17, 197-209.	2.5	171
27	GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology, 2006, 16, 833-843.	2.5	170
28	Cloning and Characterization of a Close Homologue of Human UDP-N-acetyl-1±-d-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase-T3, Designated GalNAc-T6. Journal of Biological Chemistry, 1999, 274, 25362-25370.	3.4	169
29	Functional Conservation of Subfamilies of Putative UDP-N-acetylgalactosamine:Polypeptide N-Acetylgalactosaminyltransferases inDrosophila, Caenorhabditis elegans, and Mammals. Journal of Biological Chemistry, 2002, 277, 22623-22638.	3.4	168
30	The Relative Activities of the C2GnT1 and ST3Gal-I Glycosyltransferases Determine O-Glycan Structure and Expression of a Tumor-associated Epitope on MUC1. Journal of Biological Chemistry, 2001, 276, 11007-11015.	3.4	165
31	Site-specific protein O-glycosylation modulates proprotein processing — Deciphering specific functions of the large polypeptide GalNAc-transferase gene family. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 2079-2094.	2.4	165
32	The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature, 2013, 504, 456-459.	27.8	158
33	Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3152-61.	7.1	158
34	Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Research, 2015, 43, e59-e59.	14.5	151
35	The Lectin Domain of UDP-N-acetyl-d-galactosamine:PolypeptideN-acetylgalactosaminyltransferase-T4 Directs Its Glycopeptide Specificities. Journal of Biological Chemistry, 2000, 275, 38197-38205.	3.4	147
36	Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21018-21023.	7.1	143

#	Article	IF	CITATIONS
37	Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions. Cell, 2015, 163, 629-642.	28.9	141
38	Aberrant Expression of Mucin Core Proteins and O-Linked Glycans Associated with Progression of Pancreatic Cancer. Clinical Cancer Research, 2013, 19, 1981-1993.	7.0	139
39	Pilot Study of a Heptavalent Vaccine-Keyhole Limpet Hemocyanin Conjugate plus QS21 in Patients with Epithelial Ovarian, Fallopian Tube, or Peritoneal Cancer. Clinical Cancer Research, 2007, 13, 4170-4177.	7.0	127
40	Tumor-Associated Tn-MUC1 Glycoform Is Internalized through the Macrophage Galactose-Type C-Type Lectin and Delivered to the HLA Class I and II Compartments in Dendritic Cells. Cancer Research, 2007, 67, 8358-8367.	0.9	122
41	Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. International Journal of Cancer, 2011, 128, 1860-1871.	5.1	122
42	A novel human UDPâ€ <i>N</i> â€acetylâ€ <scp>D</scp> â€galactosamine:polypeptide <i>N</i> â€acetylgalactosaminyltransferase, GalNAcâ€T7, with specificity for partial GalNAcâ€glycosylated acceptor substrates. FEBS Letters, 1999, 460, 226-230.	2.8	121
43	O-Glycosylation Modulates Proprotein Convertase Activation of Angiopoietin-like Protein 3. Journal of Biological Chemistry, 2010, 285, 36293-36303.	3.4	118
44	Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9893-9898.	7.1	113
45	The GAGOme: a cell-based library of displayed glycosaminoglycans. Nature Methods, 2018, 15, 881-888.	19.0	113
46	Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17690-17695.	7.1	111
47	Advances in mass spectrometry driven O-glycoproteomics. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 33-42.	2.4	104
48	Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents. Cell Metabolism, 2016, 24, 234-245.	16.2	103
49	Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nature Protocols, 2017, 12, 581-603.	12.0	103
50	Monoclonal antibodies directed to the blood group a associated structure, galactosyl-A: Specificity and relation to the thomsen-friedenreich antigen. Molecular Immunology, 1988, 25, 199-204.	2.2	101
51	A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14623-14628.	7.1	98
52	A Systematic Study of Site-specific GalNAc-type O-Glycosylation Modulating Proprotein Convertase Processing. Journal of Biological Chemistry, 2011, 286, 40122-40132.	3.4	93
53	Enhanced Mass Spectrometric Mapping of the Human GalNAc-type O-Glycoproteome with SimpleCells. Molecular and Cellular Proteomics, 2013, 12, 932-944.	3.8	92
54	The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology, 2007, 17, 374-387.	2.5	91

#	Article	IF	CITATIONS
55	Deconstruction of Oâ€glycosylation—Gal <scp>NA</scp> câ€T isoforms direct distinct subsets of theÂOâ€glycoproteome. EMBO Reports, 2015, 16, 1713-1722.	4.5	91
56	Probing the O-Glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery*. Molecular and Cellular Proteomics, 2015, 14, 1616-1629.	3.8	91
57	Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology, 2015, 25, 55-65.	2.5	89
58	A High-Throughput <i>O</i> -Glycopeptide Discovery Platform for Seromic Profiling. Journal of Proteome Research, 2010, 9, 5250-5261.	3.7	84
59	Targeting of macrophage galactoseâ€type <scp>C</scp> â€type lectin (<scp>MGL</scp>) induces <scp>DC</scp> signaling and activation. European Journal of Immunology, 2012, 42, 936-945.	2.9	84
60	Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11163-11168.	7.1	83
61	Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	83
62	The origin and function of platelet glycosyltransferases. Blood, 2012, 120, 626-635.	1.4	82
63	Fucosylation and protein glycosylation create functional receptors for cholera toxin. ELife, 2015, 4, e09545.	6.0	81
64	ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Frontiers in Bioscience - Elite, 2011, E3, 1443-1455.	1.8	81
65	Substrateâ€Guided Frontâ€Face Reaction Revealed by Combined Structural Snapshots and Metadynamics for the Polypeptide <i>N</i> â€Acetylgalactosaminyltransferaseâ€2. Angewandte Chemie - International Edition, 2014, 53, 8206-8210.	13.8	80
66	Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nature Communications, 2015, 6, 6937.	12.8	77
67	Glyco-DIA: a method for quantitative O-glycoproteomics with in silico-boosted glycopeptide libraries. Nature Methods, 2019, 16, 902-910.	19.0	75
68	Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology, 2016, 26, 360-376.	2.5	73
69	The GalNAc-type O-Glycoproteome of CHO Cells Characterized by the SimpleCell Strategy. Molecular and Cellular Proteomics, 2014, 13, 3224-3235.	3.8	72
70	SnapShot: O-Glycosylation Pathways across Kingdoms. Cell, 2018, 172, 632-632.e2.	28.9	72
71	Direct quality control of glycoengineered erythropoietin variants. Nature Communications, 2018, 9, 3342.	12.8	71
72	A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology, 2018, 28, 295-305.	2.5	70

#	Article	IF	CITATIONS
73	Development and characterization of an antibody directed to an alpha-N-acetyl-D-galactosamine glycosylated MUC2 peptide. Glycoconjugate Journal, 1998, 15, 51-62.	2.7	69
74	Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB). Journal of Biological Chemistry, 2013, 288, 14636-14646.	3.4	69
75	Mucins and associated glycan signatures in colon adenoma–carcinoma sequence: Prospective pathological implication(s) for early diagnosis of colon cancer. Cancer Letters, 2016, 374, 304-314.	7.2	68
76	The Lectin Domain of the Polypeptide GalNAc Transferase Family of Glycosyltransferases (ppGalNAc Ts) Acts as a Switch Directing Glycopeptide Substrate Glycosylation in an N- or C-terminal Direction, Further Controlling Mucin Type O-Glycosylation. Journal of Biological Chemistry, 2013, 288, 19900-19914.	3.4	67
77	Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15648-15653.	7.1	67
78	Display of the human mucinome with defined O-glycans by gene engineered cells. Nature Communications, 2021, 12, 4070.	12.8	67
79	Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae. Molecular and Cellular Proteomics, 2016, 15, 1323-1337.	3.8	61
80	Simple Mucin-Type Carbohydrates in Oral Stratified Squamous and Salivary Gland Epithelia. Journal of Investigative Dermatology, 1991, 97, 713-721.	0.7	60
81	Current Technologies for Complex Glycoproteomics and Their Applications to Biology/Disease-Driven Glycoproteomics. Journal of Proteome Research, 2018, 17, 4097-4112.	3.7	60
82	The epitope recognized by the unique anti-MUC1 monoclonal antibody MY.1E12 involves sialyÎl±2–3galactosylβ1–3N-acetylgalactosaminide linked to a distinct threonine residue in the MUC1 tandem repeat. Journal of Immunological Methods, 2002, 270, 199-209.	1.4	57
83	Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Clycoconjugate Journal, 2013, 30, 227-236.	2.7	57
84	Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. Journal of Biological Chemistry, 2018, 293, 7408-7422.	3.4	57
85	NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity. Journal of Biological Chemistry, 2017, 292, 11423-11430.	3.4	56
86	Mass Spectrometric Determination of O-Glycosylation Sites Using β-Elimination and Partial Acid Hydrolysis. Analytical Chemistry, 2001, 73, 1263-1269.	6.5	55
87	Conformational studies on the MUC1 tandem repeat glycopeptides: implication for the enzymatic O-glycosylation of the mucin protein core. Glycobiology, 2003, 13, 929-939.	2.5	53
88	Genetic glycoengineering in mammalian cells. Journal of Biological Chemistry, 2021, 296, 100448.	3.4	53
89	ldentification of a GH110 Subfamily of α1,3-Galactosidases. Journal of Biological Chemistry, 2008, 283, 8545-8554.	3.4	52
90	A glycogene mutation map for discovery of diseases of glycosylation. Glycobiology, 2015, 25, 211-224.	2.5	52

6

#	Article	IF	CITATIONS
91	Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nature Chemical Biology, 2020, 16, 351-360.	8.0	52
92	Lectin Domains of Polypeptide GalNAc Transferases Exhibit Glycopeptide Binding Specificity. Journal of Biological Chemistry, 2011, 286, 32684-32696.	3.4	50
93	Detection of glycoâ€mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours. Molecular Oncology, 2015, 9, 503-512.	4.6	50
94	The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nature Communications, 2019, 10, 1785.	12.8	49
95	Precision genome editing: A small revolution for glycobiology. Glycobiology, 2014, 24, 663-680.	2.5	47
96	Modifying the red cell surface: towards an ABOâ€universal blood supply. British Journal of Haematology, 2008, 140, 3-12.	2.5	46
97	Low Density Lipoprotein Receptor Class A Repeats Are O-Glycosylated in Linker Regions. Journal of Biological Chemistry, 2014, 289, 17312-17324.	3.4	46
98	Golgi maturationâ€dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO Journal, 2021, 40, e107238.	7.8	45
99	Exploring Regulation of Protein O-Glycosylation in Isogenic Human HEK293 Cells by Differential O-Glycoproteomics. Molecular and Cellular Proteomics, 2019, 18, 1396-1409.	3.8	44
100	Glycoengineering of NK Cells with Glycan Ligands of CD22 and Selectins for B ell Lymphoma Therapy. Angewandte Chemie - International Edition, 2021, 60, 3603-3610.	13.8	44
101	Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. Glycobiology, 2018, 28, 284-294.	2.5	43
102	Characterization of Binding Epitopes of CA125 Monoclonal Antibodies. Journal of Proteome Research, 2014, 13, 3349-3359.	3.7	42
103	Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. Journal of Biological Chemistry, 2019, 294, 12567-12578.	3.4	42
104	Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends in Biochemical Sciences, 2018, 43, 269-284.	7.5	40
105	Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. Journal of Biological Chemistry, 2017, 292, 11586-11598.	3.4	39
106	Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Developmental Cell, 2020, 54, 669-684.e7.	7.0	38
107	Expression of histo-blood-group-A/B-gene-defined glycosyltransferases in normal and malignant epithelia: Correlation with A/B-carbohydrate expression. International Journal of Cancer, 1992, 52, 7-12.	5.1	37
108	Structural Analysis of Peptide Substrates for Mucin-Type O-Glycosylationâ€. Biochemistry, 1998, 37, 12811-12817.	2.5	37

#	Article	IF	CITATIONS
109	The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nature Communications, 2017, 8, 1959.	12.8	37
110	Multiple distinct O-Mannosylation pathways in eukaryotes. Current Opinion in Structural Biology, 2019, 56, 171-178.	5.7	37
111	Targeted Analysis of Lysosomal Directed Proteins and Their Sites of Mannose-6-phosphate Modification. Molecular and Cellular Proteomics, 2019, 18, 16-27.	3.8	36
112	Structural insights into the Notch-modifying glycosyltransferase Fringe. Nature Structural and Molecular Biology, 2006, 13, 945-946.	8.2	35
113	Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase) Tj ETQq1 1 4714-4726.	0.784314 3.4	4 rgBT /Overl 35
114	Structural and Mechanistic Insights into the Catalytic-Domain-Mediated Short-Range Glycosylation Preferences of GalNAc-T4. ACS Central Science, 2018, 4, 1274-1290.	11.3	35
115	Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology, 2018, 28, 542-549.	2.5	30
116	Structure-guided engineering of the affinity and specificity of CARs against Tn-glycopeptides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15148-15159.	7.1	30
117	Distinct Orders of GalNAc Incorporation into a Peptide with Consecutive Threonines. Biochemical and Biophysical Research Communications, 2001, 287, 110-115.	2.1	29
118	Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Scientific Reports, 2017, 7, 45341.	3.3	29
119	EDEM1's mannosidase-like domain binds ERAD client proteins in a redox-sensitive manner and possesses catalytic activity. Journal of Biological Chemistry, 2018, 293, 13932-13945.	3.4	29
120	ABH and Related Histo-Blood Group Antigens; Immunochemical Differences in Carrier Isotypes and Their Distribution. Vox Sanguinis, 1989, 56, 1-20.	1.5	27
121	Distinguishing Truncated and Normal MUC1 Glycoform Targeting from Tn-MUC1-Specific CAR T Cells: Specificity Is the Key to Safety. Immunity, 2016, 45, 947-948.	14.3	27
122	Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions. Nature Communications, 2022, 13, .	12.8	27
123	Glycoprotein I of herpes simplex virus type 1 contains a unique polymorphic tandem-repeated mucin region. Journal of General Virology, 2007, 88, 1683-1688.	2.9	25
124	GlycoDomainViewer: a bioinformatics tool for contextual exploration of glycoproteomes. Glycobiology, 2018, 28, 131-136.	2.5	25
125	Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology, 2020, 30, 910-922.	2.5	25
126	Isoforms of MUC16 activate oncogenic signaling through EGF receptors to enhance the progression of pancreatic cancer. Molecular Therapy, 2021, 29, 1557-1571.	8.2	25

#	Article	IF	CITATIONS
127	FUT8-Directed Core Fucosylation of N-glycans Is Regulated by the Glycan Structure and Protein Environment. ACS Catalysis, 2021, 11, 9052-9065.	11.2	25
128	Glycoengineering of Human Cell Lines Using Zinc Finger Nuclease Gene Targeting: SimpleCells with Homogeneous GalNAc O-glycosylation Allow Isolation of the O-glycoproteome by One-Step Lectin Affinity Chromatography. Methods in Molecular Biology, 2013, 1022, 387-402.	0.9	25
129	Incorporation ofN-acetylgalactosamine into consecutive threonine residues in MUC2 tandem repeat by recombinant humanN-acetyl-D-galactosamine transferase-T1, T2 and T3. FEBS Letters, 1999, 449, 230-234.	2.8	24
130	Site-specific O -glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human Î'-opioid receptor turnover at the plasma membrane. Cellular Signalling, 2018, 42, 184-193.	3.6	24
131	A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. ELife, 2019, 8, .	6.0	24
132	ER-resident oxidoreductases are glycosylated and trafficked to the cell surface to promote matrix degradation by tumour cells. Nature Cell Biology, 2020, 22, 1371-1381.	10.3	24
133	MUC4 enhances gemcitabine resistance and malignant behaviour in pancreatic cancer cells expressing cancer-associated short O-glycans. Cancer Letters, 2021, 503, 91-102.	7.2	24
134	Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. Science Advances, 2021, 7, eabl6026.	10.3	23
135	Carbohydrate clearance receptors in transfusion medicine. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1797-1808.	2.4	22
136	Mucins and Truncated O-Glycans Unveil Phenotypic Discrepancies between Serous Ovarian Cancer Cell Lines and Primary Tumours. International Journal of Molecular Sciences, 2018, 19, 2045.	4.1	22
137	Endoplasmic reticulum transmembrane protein TMTC3 contributes to O-mannosylation of E-cadherin, cellular adherence, and embryonic gastrulation. Molecular Biology of the Cell, 2020, 31, 167-183.	2.1	21
138	Multiple cancer-specific antigens are targeted by a chimeric antibody receptor on a single cancer cell. JCI Insight, 2019, 4, .	5.0	21
139	Lepidopteran defence droplets - a composite physical and chemical weapon against potential predators. Scientific Reports, 2016, 6, 22407.	3.3	20
140	Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of <i>Zygaena</i> larvae facilitates cyanide release. Royal Society Open Science, 2017, 4, 170262.	2.4	20
141	Cell-Based Glycan Arrays—A Practical Guide to Dissect the Human Glycome. STAR Protocols, 2020, 1, 100017.	1.2	20
142	Applying transcriptomics to study glycosylation at the cell type level. IScience, 2022, 25, 104419.	4.1	20
143	Activity of N-acylneuraminate-9-phosphatase (NANP) is not essential for de novo sialic acid biosynthesis. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1471-1479.	2.4	18
144	A novel monoclonal antibody to a defined peptide epitope in MUC16. Glycobiology, 2015, 25, 1172-1182.	2.5	17

#	Article	IF	CITATIONS
145	Characterization of an immunodominant cancer-specific O-glycopeptide epitope in murine podoplanin (OTS8). Glycoconjugate Journal, 2010, 27, 571-582.	2.7	16
146	Elucidation of the sugar recognition ability of the lectin domain of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 3 by using unnatural glycopeptide substrates. Glycobiology, 2012, 22, 429-438.	2.5	16
147	Structural Analysis of a GalNAcâ€T2 Mutant Reveals an Inducedâ€Fit Catalytic Mechanism for GalNAcâ€Ts. Chemistry - A European Journal, 2018, 24, 8382-8392.	3.3	16
148	Polypeptide N-acetylgalactosaminyltransferase-Associated Phenotypes in Mammals. Molecules, 2021, 26, 5504.	3.8	16
149	Loss of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 3 and reduced O-glycosylation in colon carcinoma cells selected for hepatic metastasis. Glycoconjugate Journal, 2010, 27, 267-276.	2.7	15
150	Rescue of Drosophila Melanogaster I(2)35Aa lethality is only mediated by polypeptide GalNAc-transferase pgant35A, but not by the evolutionary conserved human ortholog GalNAc-transferase-T11. Glycoconjugate Journal, 2010, 27, 435-444.	2.7	14
151	Development of Isoform-specific Sensors of Polypeptide GalNAc-transferase Activity. Journal of Biological Chemistry, 2014, 289, 30556-30566.	3.4	14
152	Exploring the glycosylation of mucins by use of O-glycodomain reporters recombinantly expressed in glycoengineered HEK293 cells. Journal of Biological Chemistry, 2022, 298, 101784.	3.4	14
153	Revisiting the human polypeptide GalNAc-T1 and T13 paralogs. Glycobiology, 2017, 27, 140-153.	2.5	13
154	Atomic and Specificity Details of Mucin 1 <i>O</i> -Glycosylation Process by Multiple Polypeptide GalNAc-Transferase Isoforms Unveiled by NMR and Molecular Modeling. Jacs Au, 2022, 2, 631-645.	7.9	12
155	The ELAM-1 ligand sialosyl-Lexis present on Langerhans cells isolated from stratified epithelium. Experimental Dermatology, 1992, 1, 236-241.	2.9	10
156	Extrinsic Functions of Lectin Domains in O-N-Acetylgalactosamine Glycan Biosynthesis. Journal of Biological Chemistry, 2016, 291, 25339-25350.	3.4	10
157	Investigating Patterns of Immune Interaction in Ovarian Cancer: Probing the O-glycoproteome by the Macrophage Galactose-Like C-Type Lectin (MGL). Cancers, 2020, 12, 2841.	3.7	10
158	Generation of Monoclonal Antibodies to Native Active Human Glycosyltransferases. Methods in Molecular Biology, 2013, 1022, 403-420.	0.9	10
159	IDDM7 links to insulin-dependent diabetes mellitus in Danish multiplex families but linkage is not explained by novel polymorphisms in the candidate geneGALNT3. Human Mutation, 2000, 15, 295-296.	2.5	9
160	Simple mucinâ€ŧype carbohydrate antigens in pleomorphic adenomas. Apmis, 1993, 101, 242-248.	2.0	8
161	Chemoenzymatic synthesis of derivatives of a T-cell-stimulating peptide which carry tumor-associated carbohydrate antigens. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 880-885.	1.3	8
162	Structural basis for the synthesis of the core 1 structure by C1GalT1. Nature Communications, 2022, 13, 2398.	12.8	8

#	Article	IF	CITATIONS
163	The half-life of the bone-derived hormone osteocalcin is regulated through O-glycosylation in mice, but not in humans. ELife, 2020, 9, .	6.0	7
164	Engineering mammalian cells to produce plant-specific N-glycosylation on proteins. Glycobiology, 2020, 30, 528-538.	2.5	6
165	A mutation map for human glycoside hydrolase genes. Glycobiology, 2020, 30, 500-515.	2.5	6
166	Drosophila O-GlcNAcase Mutants Reveal an Expanded Glycoproteome and Novel Growth and Longevity Phenotypes. Cells, 2021, 10, 1026.	4.1	6
167	Installation of O-glycan sulfation capacities in human HEK293Âcells for display of sulfated mucins. Journal of Biological Chemistry, 2022, 298, 101382.	3.4	6
168	Targeting a Tumor-Specific Epitope on Podocalyxin Increases Survival in Human Tumor Preclinical Models. Frontiers in Oncology, 2022, 12, .	2.8	6
169	Histo-blood group p: biosynthesis of globoseries glycolipids in EBV-transformed B cell lines. Glycoconjugate Journal, 1996, 13, 529-535.	2.7	5
170	Generation and characterization of a monoclonal antibody to the cytoplasmic tail of MUC16. Glycobiology, 2017, 27, 920-926.	2.5	5
171	Expression of the O-Clycosylation Enzyme GalNAc-T3 in the Equatorial Segment Correlates with the Quality of Spermatozoa. International Journal of Molecular Sciences, 2018, 19, 2949.	4.1	5
172	Protein O-GalNAc Glycosylation: The Most Complex and Differentially Regulated PTM. , 2014, , 1-14.		4
173	A novel α-N-acetylgalactosaminidase family with an NAD+-dependent catalytic mechanism suitable for enzymatic removal of blood group A antigens. Biocatalysis and Biotransformation, 2010, 28, 22-32.	2.0	3
174	Towards universally acceptable blood. Nature Microbiology, 2019, 4, 1426-1427.	13.3	2
175	Glycoengineering of NK Cells with Glycan Ligands of CD22 and Selectins for Bâ€Cell Lymphoma Therapy. Angewandte Chemie, 2021, 133, 3647-3654.	2.0	2
176	The incorrect use of CD75 as a synonym for ST6GAL1 has fostered the expansion of commercial "ST6GAL1―antibodies that do not recognize ST6GAL1. Glycobiology, 0, , .	2.5	2
177	A Bump-and-Hole Approach to Dissect Regulation of Protein O-Glycosylation. Molecular Cell, 2020, 78, 803-805.	9.7	1
178	Professor Sen-itiroh Hakomori (1929–2020): A tribute to a remarkable glycobiologist, mentor and friend!. Glycobiology, 2021, 31, 708-712.	2.5	1
179	Role of Polypeptide GalNAc-transferase T3 in Familial Tumoral Calcinosis: The Importance of a Single GalNAc-transferase Isoform. Trends in Glycoscience and Glycotechnology, 2007, 19, 265-270.	0.1	1
180	Megakaryocytes Package and Deliver Golgi-Associated Glycosyltransferases into Platelets and to Platelet Surfaces Using Dense Granules Blood, 2005, 106, 1643-1643.	1.4	1

#	Article	IF	CITATIONS
181	Platelets Lacking Sialic Acid Clear Rapidly from the Circulation Due to Ingestion by Asialoglycoprotein Receptor-Expressing Liver Macrophages and Hepatocytes Blood, 2006, 108, 1521-1521.	1.4	1
182	Truncated O ―glycans Enhance Tumorigenicity of Pancreatic Tumors. FASEB Journal, 2013, 27, 592.7.	0.5	0
183	OUP accepted manuscript. Glycobiology, 2022, , .	2.5	0