Keith P Johnston

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2833132/keith-p-johnston-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

83 129 22,231 352 h-index g-index citations papers 6.78 361 24,049 5.7 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
35 2	Highly Elastic Interconnected Porous Hydrogels through Self-Assembled Templating for Solar Water Purification. <i>Angewandte Chemie</i> , 2022 , 134, e202114074	3.6	1
351	Highly Elastic Interconnected Porous Hydrogels through Self-Assembled Templating for Solar Water Purification. <i>Angewandte Chemie - International Edition</i> , 2021 , 61, e202114074	16.4	11
350	Elastic gas/water interface for highly stable foams with modified anionic silica nanoparticles and a like-charged surfactant. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 1401-1413	9.3	1
349	Tuning Nanoparticle Surface Chemistry and Interfacial Properties for Highly Stable Nitrogen-In-Brine Foams. <i>Langmuir</i> , 2021 , 37, 5408-5423	4	4
348	Tuning Surface Chemistry and Ionic Strength to Control Nanoparticle Adsorption and Elastic Dilational Modulus at Air-Brine Interface. <i>Langmuir</i> , 2021 , 37, 5795-5809	4	5
347	Effect of surface chemistry of silica nanoparticles on contact angle of oil on calcite surfaces in concentrated brine with divalent ions. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 656-668	9.3	7
346	Development and experimental evaluation of a mathematical model to predict polymer-enhanced nanoparticle mobility in heterogeneous formations. <i>Environmental Science: Nano</i> , 2021 , 8, 470-484	7.1	1
345	Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation. <i>Advanced Materials</i> , 2021 , 33, e2102994	24	24
344	Crude Oil Recovery with Duomeen CTM-Stabilized Supercritical CO2 Foams for HPHT and Ultrahigh-Salinity Carbonate Reservoirs. <i>Energy & Energy & Ene</i>	4.1	9
343	Coarse-Grained Molecular Dynamics Simulations for Understanding the Impact of Short-Range Anisotropic Attractions on Structure and Viscosity of Concentrated Monoclonal Antibody Solutions. <i>Molecular Pharmaceutics</i> , 2020 , 17, 1748-1756	5.6	10
342	Protein-Protein Interactions, Clustering, and Rheology for Bovine IgG up to High Concentrations Characterized by Small Angle X-Ray Scattering and Molecular Dynamics Simulations. <i>Journal of Pharmaceutical Sciences</i> , 2020 , 109, 696-708	3.9	7
341	Polyelectrolyte coated individual silica nanoparticles dispersed in concentrated divalent brine at elevated temperatures for subsurface energy applications. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 586, 124276	5.1	3
340	Tuning Redox Transitions via the Inductive Effect in LaNi1NFexO3Perovskites for High-Power Asymmetric and Symmetric Pseudocapacitors. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6558-6568	6.1	12
339	Relating Collective Diffusion, Protein Protein Interactions, and Viscosity of Highly Concentrated Monoclonal Antibodies through Dynamic Light Scattering. <i>Industrial & Dynamic Light Scattering</i> .	3.9	7
338	Comparison of perovskite and perovskite derivatives for use in anion-based pseudocapacitor applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 21222-21231	13	8
337	Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on LaSrCoO perovskite composite electrodes. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 3327-3338	3.6	17
336	Evaluating the Transport Behavior of CO2 Foam in the Presence of Crude Oil under High-Temperature and High-Salinity Conditions for Carbonate Reservoirs. <i>Energy & amp; Fuels</i> , 2019 , 33, 6038-6047	4.1	24

335	X-ray Scattering and Coarse-Grained Simulations for Clustering and Interactions of Monoclonal Antibodies at High Concentrations. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 5274-5290	3.4	15
334	Enhancing Stability and Reducing Viscosity of a Monoclonal Antibody With Cosolutes by Weakening Protein-Protein Interactions. <i>Journal of Pharmaceutical Sciences</i> , 2019 , 108, 2517-2526	3.9	5
333	Enhanced Electrocatalytic Activities by Substitutional Tuning of Nickel-Based Ruddlesden P opper Catalysts for the Oxidation of Urea and Small Alcohols. <i>ACS Catalysis</i> , 2019 , 9, 2664-2673	13.1	60
332	Self-diffusion of a highly concentrated monoclonal antibody by fluorescence correlation spectroscopy: insight into protein-protein interactions and self-association. <i>Soft Matter</i> , 2019 , 15, 6660	- <i>6</i> 676	7
331	Protein-Protein Interactions of Highly Concentrated Monoclonal Antibody Solutions via Static Light Scattering and Influence on the Viscosity. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 739-755	3.4	19
330	Two-Step Adsorption of a Switchable Tertiary Amine Surfactant Measured Using a Quartz Crystal Microbalance with Dissipation. <i>Langmuir</i> , 2019 , 35, 695-701	4	10
329	Anion-Based Pseudocapacitance of the Perovskite Library LaSr BO (B = Fe, Mn, Co). <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5084-5094	9.5	36
328	Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing. <i>Journal of Colloid and Interface Science</i> , 2018 , 526, 253-267	9.3	20
327	Carbon dioxide/water foams stabilized with a zwitterionic surfactant at temperatures up to 150 °C in high salinity brine. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 166, 880-890	4.4	51
326	Aqueous Superparamagnetic Magnetite Dispersions with Ultrahigh Initial Magnetic Susceptibilities. <i>Langmuir</i> , 2018 , 34, 622-629	4	4
325	Improving Viscosity and Stability of a Highly Concentrated Monoclonal Antibody Solution with Concentrated Proline. <i>Pharmaceutical Research</i> , 2018 , 35, 133	4.5	22
324	Oil effect on CO2 foam stabilized by a switchable amine surfactant at high temperature and high salinity. <i>Fuel</i> , 2018 , 227, 247-255	7.1	23
323	Viscoelastic diamine surfactant for stable carbon dioxide/water foams over a wide range in salinity and temperature. <i>Journal of Colloid and Interface Science</i> , 2018 , 522, 151-162	9.3	34
322	Role of the Carbon Support on the Oxygen Reduction and Evolution Activities in LaNiO3 Composite Electrodes in Alkaline Solution. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1549-1558	6.1	29
321	Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in LaSrNiFeO Ruddlesden-Popper oxides. <i>Nature Communications</i> , 2018 , 9, 3150	17.4	108
320	Noncovalent grafting of polyelectrolytes onto hydrophobic polymer colloids with a swelling agent. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 555, 457-464	5.1	4
319	Design of CO2-in-Water Foam Stabilized with Switchable Amine Surfactants at High Temperature in High-Salinity Brine and Effect of Oil. <i>Energy & Discourse Stabilized Water Stab</i>	4.1	23
318	CO2/Water Foams Stabilized with Cationic or Zwitterionic Surfactants at Temperatures up to 120 $ t t t t t t t t t t t t t $		8

317	Identification and Evaluation of Viscoelastic Surfactants Including Smart Viscoelastic Systems for Generation and Stabilization of Ultra-Dry N2 and CO2 Foam for Fracturing Fluids and Proppant Transport 2018 ,		1
316	High temperature stability and low adsorption of sub-100 nm magnetite nanoparticles grafted with sulfonated copolymers on Berea sandstone in high salinity brine. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 520, 257-267	5.1	29
315	Control of Primary Particle Spacing in Gold Nanoparticle Clusters for Both High NIR Extinction and Full Reversibility. <i>Langmuir</i> , 2017 , 33, 3413-3426	4	5
314	Simulation of magnetite nanoparticle mobility in a heterogeneous flow cell. <i>Environmental Science: Nano</i> , 2017 , 4, 1512-1524	7.1	5
313	Behavior of Spherical Poly(2-acrylamido-2-methylpropanesulfonate) Polyelectrolyte Brushes on Silica Nanoparticles up to Extreme Salinity with Weak Divalent Cation Binding at Ambient and High Temperature. <i>Macromolecules</i> , 2017 , 50, 7699-7711	5.5	15
312	Reversible Self-Assembly of Glutathione-Coated Gold Nanoparticle Clusters via pH-Tunable Interactions. <i>Langmuir</i> , 2017 , 33, 12244-12253	4	34
311	Carbon Dioxide-in-Brine Foams at High Temperatures and Extreme Salinities Stabilized with Silica Nanoparticles. <i>Energy & Discourse Stabilized With Silica Nanoparticles</i> . <i>Energy & Discourse Stabilized With Silica Nanoparticles</i> . <i>Energy & Discourse Stabilized With Silica Nanoparticles</i> .	4.1	36
310	Charge Shielding Prevents Aggregation of Supercharged GFP Variants at High Protein Concentration. <i>Molecular Pharmaceutics</i> , 2017 , 14, 3269-3280	5.6	17
309	Contrasting the Influence of Cationic Amino Acids on the Viscosity and Stability of a Highly Concentrated Monoclonal Antibody. <i>Pharmaceutical Research</i> , 2017 , 34, 193-207	4.5	37
308	Foam Generation Hysteresis in Porous Media: Experiments and New Insights. <i>Transport in Porous Media</i> , 2017 , 116, 687-703	3.1	17
307	High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants. <i>Journal of Colloid and Interface Science</i> , 2017 , 488, 79-91	9.3	54
306	Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes. <i>Journal of Colloid and Interface Science</i> , 2016 , 461, 383-395	9.3	83
305	Viscosity Reduction of a Concentrated Monoclonal Antibody with Arginine HCl and Arginine Glutamate. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 11225-11234	3.9	20
304	Water electrolysis on La(1-x)Sr(x)CoO(3-∏perovskite electrocatalysts. <i>Nature Communications</i> , 2016 , 7, 11053	17.4	550
303	Modeling fracture propagation and cleanup for dry nanoparticle-stabilized-foam fracturing fluids. Journal of Petroleum Science and Engineering, 2016 , 146, 210-221	4.4	22
302	Mobility of Ethomeen C12 and Carbon Dioxide (CO2) Foam at High Temperature/High Salinity and in Carbonate Cores. <i>SPE Journal</i> , 2016 , 21, 1151-1163	3.1	63
301	High Temperature CO2-in-Water Foams Stabilized with Cationic Quaternary Ammonium Surfactants. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 2761-2770	2.8	25
300	Nanoparticle-Stabilized Emulsions for Improved Mobility Control for Adverse-mobility Waterflooding 2016 ,		11

299	Viscosity and Stability of Dry CO2 Foams for Improved Oil Recovery 2016 ,		1
298	Formation of Small Gold Nanoparticle Chains with High NIR Extinction through Bridging with Calcium Ions. <i>Langmuir</i> , 2016 , 32, 1127-38	4	19
297	Steric stabilization of nanoparticles with grafted low molecular weight ligands in highly concentrated brines including divalent ions. <i>Soft Matter</i> , 2016 , 12, 2025-39	3.6	70
296	Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 1	2.3	96
295	Low Adsorption of Magnetite Nanoparticles with Uniform Polyelectrolyte Coatings in Concentrated Brine on Model Silica and Sandstone. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 1522-1532	3.9	29
294	Phase behavior and interfacial properties of a switchable ethoxylated amine surfactant at high temperature and effects on CO2-in-water foams. <i>Journal of Colloid and Interface Science</i> , 2016 , 470, 80-	99.3	38
293	High concentration tangential flow ultrafiltration of stable monoclonal antibody solutions with low viscosities. <i>Journal of Membrane Science</i> , 2016 , 508, 113-126	9.6	29
292	Improved Mobility of Magnetite Nanoparticles at High Salinity with Polymers and Surfactants. <i>Energy & Doubles Fuels</i> , 2016 , 30, 1915-1926	4.1	16
291	Ultradry Carbon Dioxide-in-Water Foams with Viscoelastic Aqueous Phases. <i>Langmuir</i> , 2016 , 32, 28-37	4	53
290	Control of magnetite primary particle size in aqueous dispersions of nanoclusters for high magnetic susceptibilities. <i>Journal of Colloid and Interface Science</i> , 2016 , 462, 359-67	9.3	14
289	Transport of Nanoparticle-Stabilized CO(_2)-Foam in Porous Media. <i>Transport in Porous Media</i> , 2016 , 111, 265-285	3.1	37
288	Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation. <i>ACS Catalysis</i> , 2016 , 6, 5044-5051	13.1	156
287	Experimental Studies and Modeling of Foam Hysteresis in Porous Media 2016,		6
286	Static Adsorption of an Ethoxylated Nonionic Surfactant on Carbonate Minerals. <i>Langmuir</i> , 2016 , 32, 10244-10252	4	64
285	CO2-in-Water Foam at Elevated Temperature and Salinity Stabilized with a Nonionic Surfactant with a High Degree of Ethoxylation. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 4252-42	63 .9	57
284	Origin and detection of microstructural clustering in fluids with spatial-range competitive interactions. <i>Physical Review E</i> , 2015 , 91, 042312	2.4	31
283	Biodegradable Plasmonic Nanoparticles: Overcoming Clinical Translation Barriers 2015,		2
282	CO2-Soluble Ionic Surfactants and CO2Foams for High-Temperature and High-Salinity Sandstone Reservoirs. <i>Energy & Damp; Fuels</i> , 2015 , 29, 5750-5760	4.1	32

281	Gold nanoparticles with high densities of small protuberances on nanocluster cores with strong NIR extinction. <i>RSC Advances</i> , 2015 , 5, 104674-104687	3.7	6
280	Multi-Scale Evaluation of Nanoparticle-Stabilized CO2-in-Water Foams: From the Benchtop to the Field 2015 ,		9
279	Synthesis of Iron Oxide Nanoclusters with Enhanced Magnetization and Their Applications in Pulsed Magneto-Motive Ultrasound Imaging. <i>Nano</i> , 2015 , 10, 1550073	1.1	6
278	Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles. <i>Langmuir</i> , 2014 , 30, 984-94	4	79
277	Effect of Grafted Copolymer Composition on Iron Oxide Nanoparticle Stability and Transport in Porous Media at High Salinity. <i>Energy & Energy & Ene</i>	4.1	67
276	High interfacial activity of polymers "grafted through" functionalized iron oxide nanoparticle clusters. <i>Langmuir</i> , 2014 , 30, 10188-96	4	29
275	Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	73
274	Iron Oxide Nanoparticles Grafted with Sulfonated and Zwitterionic Polymers: High Stability and Low Adsorption in Extreme Aqueous Environments. <i>ACS Macro Letters</i> , 2014 , 3, 867-871	6.6	34
273	Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. <i>Nature Materials</i> , 2014 , 13, 726-32	27	442
272	Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions. <i>Chemistry of Materials</i> , 2014 , 26, 3368-3376	9.6	196
271	Quenched Assembly of NIR-Active Gold Nanoclusters Capped with Strongly Bound Ligands by Tuning Particle Charge via pH and Salinity. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 14291-14298	3.8	16
270	Switchable Amine Surfactants for Stable CO2/Brine Foams in High Temperature, High Salinity Reservoirs 2014 ,		17
269	Carbon Dioxide-in-Water Foams Stabilized with a Mixture of Nanoparticles and Surfactant for CO2 Storage and Utilization Applications. <i>Energy Procedia</i> , 2014 , 63, 7929-7938	2.3	31
268	Switchable Nonionic to Cationic Ethoxylated Amine Surfactants for CO2 Enhanced Oil Recovery in High-Temperature, High-Salinity Carbonate Reservoirs. <i>SPE Journal</i> , 2014 , 19, 249-259	3.1	77
267	Switchable Diamine Surfactants for CO2 Mobility Control in Enhanced Oil Recovery and Sequestration. <i>Energy Procedia</i> , 2014 , 63, 7709-7716	2.3	16
266	Tunable equilibrium nanocluster dispersions at high protein concentrations. Soft Matter, 2013, 9, 1766	-13.761	28
265	Respirable low-density microparticles formed in situ from aerosolized brittle matrices. <i>Pharmaceutical Research</i> , 2013 , 30, 813-25	4.5	39
264	Stabilization of iron oxide nanoparticles in high sodium and calcium brine at high temperatures with adsorbed sulfonated copolymers. <i>Langmuir</i> , 2013 , 29, 3195-206	4	53

263	Excretion and toxicity of gold-iron nanoparticles. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2013 , 9, 356-65	6	41
262	Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal-Air Battery Electrodes. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1254-9	6.4	258
261	Charged gold nanoparticles with essentially zero serum protein adsorption in undiluted fetal bovine serum. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7799-802	16.4	73
260	Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. <i>Journal of Colloid and Interface Science</i> , 2013 , 403, 1-6	9.3	58
259	Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture. <i>Journal of Colloid and Interface Science</i> , 2013 , 391, 142-51	9.3	146
258	Iron oxide nanoparticles grafted with sulfonated copolymers are stable in concentrated brine at elevated temperatures and weakly adsorb on silica. <i>ACS Applied Materials & Discounty (Materials & Discounty)</i> Interfaces, 2013 , 5, 332	9-39	79
257	Equilibrium gold nanoclusters quenched with biodegradable polymers. ACS Nano, 2013, 7, 239-51	16.7	49
256	Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous media. <i>Journal of Petroleum Science and Engineering</i> , 2012 , 81, 129-144	4.4	67
255	Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose. <i>Lasers in Surgery and Medicine</i> , 2012 , 44, 49-59	3.6	14
254	Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9812-9	16.4	225
253	Bifunctional Catalysts for Alkaline Oxygen Reduction Reaction via Promotion of Ligand and Ensemble Effects at Ag/MnOx Nanodomains. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 11032-11039	3.8	65
252	Effect of Adsorbed Amphiphilic Copolymers on the Interfacial Activity of Superparamagnetic Nanoclusters and the Emulsification of Oil in Water. <i>Macromolecules</i> , 2012 , 45, 5157-5166	5.5	56
251	Nanoparticle Stabilized Carbon Dioxide in Water Foams for Enhanced Oil Recovery 2012,		28
250	Precipitation Technologies for Nanoparticle Production. <i>AAPS Advances in the Pharmaceutical Sciences Series</i> , 2012 , 501-568	0.5	3
249	High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates. <i>Journal of Materials Chemistry</i> , 2012 , 22, 3160		77
248	Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers. <i>ACS Nano</i> , 2012 , 6, 1357-69	16.7	89
247	Antibody nanoparticle dispersions formed with mixtures of crowding molecules retain activity and in vivo bioavailability. <i>Journal of Pharmaceutical Sciences</i> , 2012 , 101, 3763-78	3.9	9
246	Thermal stability of biodegradable plasmonic nanoclusters in photoacoustic imaging. <i>Optics Express</i> , 2012 , 20, 29479-87	3.3	17

245	Flocculated amorphous itraconazole nanoparticles for enhanced in vitro supersaturation and in vivo bioavailability. <i>Drug Development and Industrial Pharmacy</i> , 2012 , 38, 557-70	3.6	40
244	Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles. <i>Journal of Biomedical Optics</i> , 2012 , 17, 036009	3.5	6
243	Ethoxylated Cationic Surfactants for CO2 EOR in High Temperature, High Salinity Reservoirs 2012,		27
242	Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells. <i>Langmuir</i> , 2011 , 27, 10962-9	4	48
241	Comparison of pulsed photothermal radiometry, optical coherence tomography and ultrasound for melanoma thickness measurement in PDMS tissue phantoms. <i>Journal of Biophotonics</i> , 2011 , 4, 335-44	3.1	17
240	Selective targeting of antibody conjugated multifunctional nanoclusters (nanoroses) to epidermal growth factor receptors in cancer cells. <i>Langmuir</i> , 2011 , 27, 7681-90	4	36
239	Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles. <i>Nanotechnology</i> , 2011 , 22, 415105	3.4	17
238	Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles 2010 ,		4
237	Low viscosity highly concentrated injectable nonaqueous suspensions of lysozyme microparticles. <i>Langmuir</i> , 2010 , 26, 1067-74	4	23
236	Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants. <i>Langmuir</i> , 2010 , 26, 5335-48	4	107
235	Kinetic assembly of near-IR-active gold nanoclusters using weakly adsorbing polymers to control the size. <i>Langmuir</i> , 2010 , 26, 8988-99	4	57
234	Theoretical and Experimental Investigation of the Motion of Multiphase Fluids Containing Paramagnetic Nanoparticles in Porous Media 2010 ,		7
233	Depth resolved photothermal OCT detection of macrophages in tissue using nanorose. <i>Biomedical Optics Express</i> , 2010 , 1, 2-16	3.5	30
232	Nanoparticle-Stabilized Supercritical CO2 Foams for Potential Mobility Control Applications 2010 ,		104
231	Utility of biodegradable plasmonic nanoclusters in photoacoustic imaging. <i>Optics Letters</i> , 2010 , 35, 375	1 3 3	45
230	Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2010 , 75, 33-41	5.7	107
229	Hybrid MnO2disordered mesoporous carbon nanocomposites: synthesis and characterization as electrochemical pseudocapacitor electrodes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 390-398		73
228	Twin-Tailed Surfactants for Creating CO2-in-Water Macroemulsions for Sweep Enhancement in CO2-EOR 2010 ,		17

(2008-2010)

227	Nanorose and lipid detection in atherosclerotic plaque using dual-wavelength photothermal wave imaging 2010 ,		1
226	Stable Citrate-Coated Iron Oxide Superparamagnetic Nanoclusters at High Salinity. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 12435-12443	3.9	56
225	Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications. <i>ACS Nano</i> , 2010 , 4, 2178-84	16.7	149
224	In vitro characterization and pharmacokinetics in mice following pulmonary delivery of itraconazole as cyclodextrin solubilized solution. <i>European Journal of Pharmaceutical Sciences</i> , 2010 , 39, 336-47	5.1	40
223	Templated open flocs of anisotropic particles for pulmonary delivery with pressurized metered dose inhalers. <i>Journal of Pharmaceutical Sciences</i> , 2010 , 99, 3150-65	3.9	19
222	Effect of branching on the interfacial properties of nonionic hydrocarbon surfactants at the air-water and carbon dioxide-water interfaces. <i>Journal of Colloid and Interface Science</i> , 2010 , 346, 455-65	39.3	89
221	Electrophoretic mobility of concentrated carbon black dispersions in a low-permittivity solvent by optical coherence tomography. <i>Journal of Colloid and Interface Science</i> , 2010 , 345, 194-9	9.3	20
220	Carbon dioxide/water, water/carbon dioxide emulsions and double emulsions stabilized with a nonionic biocompatible surfactant. <i>Journal of Colloid and Interface Science</i> , 2010 , 348, 469-78	9.3	32
219	Superparamagnetic nanoclusters coated with oleic acid bilayers for stabilization of emulsions of water and oil at low concentration. <i>Journal of Colloid and Interface Science</i> , 2010 , 351, 225-32	9.3	50
218	Interfacial tension and the behavior of microemulsions and macroemulsions of water and carbon dioxide with a branched hydrocarbon nonionic surfactant. <i>Journal of Supercritical Fluids</i> , 2010 , 55, 712-7	2 ⁴ 3 ²	39
217	Templated open flocs of nanorods for enhanced pulmonary delivery with pressurized metered dose inhalers. <i>Pharmaceutical Research</i> , 2009 , 26, 101-17	4.5	33
216	Colloids in supercritical fluids over the last 20 years and future directions. <i>Journal of Supercritical Fluids</i> , 2009 , 47, 523-530	4.2	86
215	Flocculation of polymer stabilized nanocrystal suspensions to produce redispersible powders. <i>Drug Development and Industrial Pharmacy</i> , 2009 , 35, 283-96	3.6	26
214	Highly supersaturated solutions from dissolution of amorphous itraconazole microparticles at pH 6.8. <i>Molecular Pharmaceutics</i> , 2009 , 6, 375-85	5.6	33
213	Highly Stable and Active Pttu Oxygen Reduction Electrocatalysts Based on Mesoporous Graphitic Carbon Supports. <i>Chemistry of Materials</i> , 2009 , 21, 4515-4526	9.6	99
212	Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. <i>ACS Nano</i> , 2009 , 3, 2686-96	16.7	174
211	Highly supersaturated solutions of amorphous drugs approaching predictions from configurational thermodynamic properties. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 16675-81	3.4	40
210	Nebulization of nanoparticulate amorphous or crystalline tacrolimussingle-dose pharmacokinetics study in mice. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2008 , 69, 1057-66	5.7	38

209	Stable Ordered FePt Mesoporous Silica Catalysts with High Loadings. <i>Chemistry of Materials</i> , 2008 , 20, 5005-5015	9.6	29
208	Stable colloidal dispersions of a lipase-perfluoropolyether complex in liquid and supercritical carbon dioxide. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 4760-9	3.4	12
207	Effect of stabilizer on the maximum degree and extent of supersaturation and oral absorption of tacrolimus made by ultra-rapid freezing. <i>Pharmaceutical Research</i> , 2008 , 25, 167-75	4.5	84
206	Formation of stable submicron protein particles by thin film freezing. <i>Pharmaceutical Research</i> , 2008 , 25, 1334-46	4.5	51
205	Flocculated amorphous nanoparticles for highly supersaturated solutions. <i>Pharmaceutical Research</i> , 2008 , 25, 2477-87	4.5	48
204	Synthesis of polystyrene/SiO2 composite microparticles by dispersion polymerization in supercritical fluid. <i>Colloid and Polymer Science</i> , 2008 , 286, 1343-1348	2.4	18
203	Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. Journal of Pharmaceutical Sciences, 2008 , 97, 4915-33	3.9	55
202	High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. <i>International Journal of Pharmaceutics</i> , 2008 , 361, 177-88	6.5	95
201	Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. <i>Molecular Pharmaceutics</i> , 2007 , 4, 782-93	5.6	126
200	Ordering in asymmetric block copolymer films by a compressible fluid. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 16-25	3.4	27
199	Tertiary Amine Esters for Carbon Dioxide Based Emulsions. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 2473-2480	3.9	8
198	Contact angle of water on polystyrene thin films: effects of CO(2) environment and film thickness. <i>Langmuir</i> , 2007 , 23, 9785-93	4	130
197	Water-in-carbon dioxide emulsions stabilized with hydrophobic silica particles. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 6333-43	3.6	62
196	Microemulsions, Emulsions and Latexes 2007 , 127-146		3
195	CO2 promotes penetration and removal of aqueous hydrocarbon surfactant cleaning solutions and silylation in low-k dielectrics with 3 nm pores. <i>Journal of Supercritical Fluids</i> , 2007 , 42, 398-409	4.2	14
194	Murine airway histology and intracellular uptake of inhaled amorphous itraconazole. <i>International Journal of Pharmaceutics</i> , 2007 , 338, 219-24	6.5	26
193	Role of interfacial interactions on the anomalous swelling of polymer thin films in supercritical carbon dioxide. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 1313-1324	2.6	34
192	Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals. Journal of Controlled Release, 2007 , 117, 351-9	11.7	60

(2006-2007)

191	Monitoring ibuprofen release from multiparticulates: in situ fiber-optic technique versus the HPLC method: a technical note. <i>AAPS PharmSciTech</i> , 2007 , 8, E52	3.9	42
190	Supercritical CO2-based solvents in next generation microelectronics processing. <i>Science Bulletin</i> , 2007 , 52, 27-33		7
189	Aerosolized nanostructured itraconazole as prophylaxis against invasive pulmonary aspergillosis. Journal of Infection, 2007 , 55, 68-74	18.9	34
188	Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2007 , 65, 57-67	5.7	91
187	Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2007 , 65, 163-74	5.7	33
186	Morphology of protein particles produced by spray freezing of concentrated solutions. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2007 , 65, 149-62	5.7	40
185	Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity. <i>European Journal of Pharmaceutical Sciences</i> , 2006 , 27, 9-18	5.1	89
184	Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide in the Presence of Random Copolymers. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 121-125	4.8	18
183	Ketoprofen nanoparticle gels formed by evaporative precipitation into aqueous solution. <i>AICHE Journal</i> , 2006 , 52, 2428-2435	3.6	13
182	In vivo efficacy of aerosolized nanostructured itraconazole formulations for prevention of invasive pulmonary aspergillosis. <i>Antimicrobial Agents and Chemotherapy</i> , 2006 , 50, 1552-4	5.9	44
181	Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. <i>Langmuir</i> , 2006 , 22, 8951-9	4	300
180	Supersaturation produces high bioavailability of amorphous danazol particles formed by evaporative precipitation into aqueous solution and spray freezing into liquid technologies. <i>Drug Development and Industrial Pharmacy</i> , 2006 , 32, 559-67	3.6	45
179	Interactions of CoreBhell Silica Nanoparticles in Liquid Carbon Dioxide Measured by Dynamic Light Scattering. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 5603-5613	3.9	6
178	Wetting phenomena at the CO2/water/glass interface. <i>Langmuir</i> , 2006 , 22, 2161-70	4	152
177	Structural Inversion of Micellar Block Copolymer Thin Films. <i>Macromolecules</i> , 2006 , 39, 7044-7054	5.5	18
176	Infusion of Presynthesized Iridium Nanocrystals into Mesoporous Silica for High Catalyst Activity. <i>Chemistry of Materials</i> , 2006 , 18, 6239-6249	9.6	24
175	Single dose and multiple dose studies of itraconazole nanoparticles. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2006 , 63, 95-102	5.7	75
174	Long-ranged electrostatic repulsion and crystallization of emulsion droplets in an ultralow dielectric medium supercritical carbon dioxide. <i>Langmuir</i> , 2006 , 22, 1006-15	4	19

173	Cryogenic liquids, nanoparticles, and microencapsulation. <i>International Journal of Pharmaceutics</i> , 2006 , 324, 43-50	6.5	33
172	High internal phase CO2-in-water emulsions stabilized with a branched nonionic hydrocarbon surfactant. <i>Journal of Colloid and Interface Science</i> , 2006 , 298, 406-18	9.3	78
171	Cleaning of patterned porous low-k dielectrics with water, carbon dioxide and ambidextrous surfactants. <i>Journal of Supercritical Fluids</i> , 2006 , 39, 277-285	4.2	34
170	Improvement of Dissolution Rate of Poorly Water Soluble Drugs Using a New Particle Engineering Process: Spray Freezing into Liquid. <i>ACS Symposium Series</i> , 2006 , 305-319	0.4	6
169	Targeted high lung concentrations of itraconazole using nebulized dispersions in a murine model. <i>Pharmaceutical Research</i> , 2006 , 23, 901-11	4.5	60
168	Synthesis of germanium nanocrystals in high temperature supercritical CO(2). <i>Nanotechnology</i> , 2005 , 16, S389-94	3.4	29
167	Electrostatically stabilized metal oxide particle dispersions in carbon dioxide. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 20155-65	3.4	13
166	Interfacial Properties of Fluorocarbon and Hydrocarbon Phosphate Surfactants at the Water 102 Interface. <i>Industrial & Engineering Chemistry Research</i> , 2005, 44, 1370-1380	3.9	45
165	Electrostatic stabilization of colloids in carbon dioxide: electrophoresis and dielectrophoresis. <i>Langmuir</i> , 2005 , 21, 5914-23	4	26
164	High Yield of Germanium Nanocrystals Synthesized from Germanium Diiodide in Solution. <i>Chemistry of Materials</i> , 2005 , 17, 6479-6485	9.6	90
163	CO2-Enhanced Transport of Small Molecules in Thin PMMA Films. <i>Macromolecules</i> , 2005 , 38, 1335-1340	5.5	10
162	Comparison of powder produced by evaporative precipitation into aqueous solution (EPAS) and spray freezing into liquid (SFL) technologies using novel Z-contrast STEM and complimentary techniques. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2005 , 60, 81-9	5.7	32
161	High yield solution-liquid-solid synthesis of germanium nanowires. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15718-9	16.4	97
160	Enhanced Infusion of Gold Nanocrystals into Mesoporous Silica with Supercritical Carbon Dioxide. <i>Chemistry of Materials</i> , 2005 , 17, 6728-6738	9.6	39
159	Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution. <i>International Journal of Pharmaceutics</i> , 2005 , 302, 113-24	6.5	46
158	Encapsulation of protein nanoparticles into uniform-sized microspheres formed in a spinning oil film. <i>AAPS PharmSciTech</i> , 2005 , 6, E605-17	3.9	35
157	Novel Semiconducting Polymer Particles by Supercritical Fluid Process. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1779-1783	4.8	18
156	Uniform encapsulation of stable protein nanoparticles produced by spray freezing for the reduction of burst release. <i>Journal of Pharmaceutical Sciences</i> , 2005 , 94, 56-69	3.9	42

155	Wet Chemical Synthesis of Germanium Nanocrystals. <i>Materials Research Society Symposia</i> Proceedings, 2005 , 879, 1		2
154	Chemical-mechanical photoresist drying in supercritical carbon dioxide with hydrocarbon surfactants. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 818		30
153	Polystyrene thin films in CO(2). Physical Review E, 2004, 69, 051601	2.4	24
152	Stable amorphous danazol nanostructured powders with rapid dissolution rates produced by spray freezing into liquid. <i>Drug Development and Industrial Pharmacy</i> , 2004 , 30, 695-704	3.6	20
151	Synthesis of Ultrafine TiO2 Particles from Hydrolysis of Ti(OiPr)4 with PEO-b-PFOMA Reverse Micelles in CO2. <i>Studies in Surface Science and Catalysis</i> , 2004 , 153, 569-572	1.8	7
150	Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution. <i>AAPS PharmSciTech</i> , 2004 , 5, E11	3.9	10
149	Critical flocculation density of dilute water-in-CO2 emulsions stabilized with block copolymers. Journal of Colloid and Interface Science, 2004 , 272, 444-56	9.3	24
148	Rapid dissolution of high-potency danazol particles produced by evaporative precipitation into aqueous solution. <i>Journal of Pharmaceutical Sciences</i> , 2004 , 93, 1867-78	3.9	28
147	Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. <i>International Journal of Pharmaceutics</i> , 2004 , 271, 145-54	6.5	71
146	CO2-Enhanced Transport of Small Molecules in Thin Films: A Fluorescence Study. <i>Macromolecules</i> , 2004 , 37, 1897-1902	5.5	8
145	Welding Colloidal Crystals with Carbon Dioxide. <i>Macromolecules</i> , 2004 , 37, 7316-7324	5.5	20
144	Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2. <i>Langmuir</i> , 2004 , 20, 2466-71	4	91
143	Steric stabilization of core-shell nanoparticles in liquid carbon dioxide at the vapor pressure. <i>Langmuir</i> , 2004 , 20, 9380-7	4	19
142	Steric Stabilization of Silica Colloids in Supercritical Carbon Dioxide. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 525-534	3.9	28
141	Retrograde Vitrification in CO2/Polystyrene Thin Films. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 3457	-3.461	30
140	Inverse Opal Nanocrystal Superlattice Films. <i>Nano Letters</i> , 2004 , 4, 1943-1948	11.5	58
139	Low Interfacial Free Volume of Stubby Surfactants Stabilizes Water-in-Carbon Dioxide Microemulsions. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1962-1966	3.4	69
138	Synthesis of Germanium Nanocrystals in High Temperature Supercritical Fluid Solvents. <i>Nano Letters</i> , 2004 , 4, 969-974	11.5	102

137	Stabilization of carbon dioxide-in-water emulsions with silica nanoparticles. <i>Langmuir</i> , 2004 , 20, 7976-8	34	108
136	Materials science. Making nanoscale materials with supercritical fluids. <i>Science</i> , 2004 , 303, 482-3	33.3	167
135	Nanocrystal and Nanowire Synthesis and Dispersibility in Supercritical Fluids. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9574-9587	3.4	158
134	Electrogenerated Chemiluminescence of Ge Nanocrystals. <i>Nano Letters</i> , 2004 , 4, 183-185	11.5	127
133	Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2004 , 58, 529-37	5.7	64
132	Solvent Density-Dependent Steric Stabilization of Perfluoropolyether-Coated Nanocrystals in Supercritical Carbon Dioxide. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 15969-15975	3.4	29
131	Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. <i>Drug Development and Industrial Pharmacy</i> , 2004 , 30, 233-45	3.6	286
130	Phospholipid-stabilized nanoparticles of cyclosporine a by rapid expansion from supercritical to aqueous solution. <i>AAPS PharmSciTech</i> , 2004 , 5, 70-85	3.9	15
129	Nanocrystal Synthesis and Stabilization in Supercritical Solvents. <i>ACS Symposium Series</i> , 2003 , 339-352	0.4	2
128	Investigation of processing parameters of spray freezing into liquid to prepare polyethylene glycol polymeric particles for drug delivery. <i>AAPS PharmSciTech</i> , 2003 , 4, E12	3.9	33
127	Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology: spray-freezing into liquid with atmospheric freeze-drying. <i>Pharmaceutical Research</i> , 2003 , 20, 485-93	4.5	80
126	Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems. <i>European Journal of Pharmaceutical Sciences</i> , 2003 , 20, 295-303	5.1	107
125	Molecular Differences between Hydrocarbon and Fluorocarbon Surfactants at the CO2/Water Interface. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 10185-10192	3.4	78
124	Carbon Dioxide-Induced Plasticization of Polyimide Membranes: Pseudo-Equilibrium Relationships of Diffusion, Sorption, and Swelling. <i>Macromolecules</i> , 2003 , 36, 6433-6441	5.5	156
123	Water-in-Carbon Dioxide Microemulsions with Methylated Branched Hydrocarbon Surfactants. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6348-6358	3.9	140
122	Structure of End-Grafted Polymer Brushes in Liquid and Supercritical Carbon Dioxide: A Neutron Reflectivity Study. <i>Macromolecules</i> , 2003 , 36, 3365-3373	5.5	54
121	Stubby Surfactants for Stabilization of Water and CO2 Emulsions: Trisiloxanes. <i>Langmuir</i> , 2003 , 19, 311	4 ₄ 3120) 53
120	NMR Studies of Water Transport and Proton Exchange in Water-in-Carbon Dioxide Microemulsions. Journal of Physical Chemistry B, 2003 , 107, 1962-1968	3.4	23

(2002-2003)

119	Relaxation Dynamics of CO2 Diffusion, Sorption, and Polymer Swelling for Plasticized Polyimide Membranes. <i>Macromolecules</i> , 2003 , 36, 6442-6448	5.5	74
118	Carbon dioxide-in-water microemulsions. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3181-9	16.4	59
117	Micronized powders of a poorly water soluble drug produced by a spray-freezing into liquid-emulsion process. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2003 , 55, 161-72	5.7	51
116	Kinetics of Nonequilibrium Nanocrystal Monolayer Formation: Deposition from Liquid Carbon Dioxide. <i>Nano Letters</i> , 2003 , 3, 1671-1675	11.5	37
115	Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate. <i>Nano Letters</i> , 2003 , 3, 93-99	11.5	129
114	Formation and Growth of Water-in-CO2 Miniemulsions. <i>Langmuir</i> , 2003 , 19, 4895-4904	4	40
113	Physical stability of micronized powders produced by spray-freezing into liquid (SFL) to enhance the dissolution of an insoluble drug. <i>Pharmaceutical Development and Technology</i> , 2003 , 8, 187-97	3.4	18
112	Pressure, temperature, and thickness dependence of CO2-induced devitrification of polymer films. <i>Physical Review Letters</i> , 2003 , 91, 175503	7.4	24
111	Enhanced drug dissolution using evaporative precipitation into aqueous solution. <i>International Journal of Pharmaceutics</i> , 2002 , 243, 17-31	6.5	139
110	Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. <i>International Journal of Pharmaceutics</i> , 2002 , 242, 3-14	6.5	130
109	A novel particle engineering technology: spray-freezing into liquid. <i>International Journal of Pharmaceutics</i> , 2002 , 242, 93-100	6.5	111
108	Synthesis and properties of semifluorinated block copolymers containing poly(ethylene oxide) and poly(fluorooctyl methacrylates) via atom transfer radical polymerisation. <i>Polymer</i> , 2002 , 43, 7043-7049	3.9	63
107	Improvement of dissolution rates of poorly water soluble APIs using novel spray freezing into liquid technology. <i>Pharmaceutical Research</i> , 2002 , 19, 1278-84	4.5	93
106	Interfacial Studies of the Formation of Microemulsions of Water in Carbon Dioxide with Fluorinated Surfactants. <i>Journal of Dispersion Science and Technology</i> , 2002 , 23, 81-92	1.5	19
105	Formation of Carbon Dioxide in Water Miniemulsions Using the Phase Inversion Temperature Method. <i>Langmuir</i> , 2002 , 18, 3039-3046	4	41
104	Aqueous Latexes Formed from Polymer/CO2 Suspensions. 2. Hydrophilic Surfactants in Water. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 4750-4757	3.9	5
103	Role of Steric Stabilization on the Arrested Growth of Silver Nanocrystals in Supercritical Carbon Dioxide. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 12178-12185	3.4	86
102	Surfactant-Modified CO2DVater Interface: A Molecular View. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 13250-13261	3.4	62

101	Size-Selective Dispersion of Dodecanethiol-Coated Nanocrystals in Liquid and Supercritical Ethane by Density Tuning. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 2545-2551	3.4	110
100	Formation of TiO2 nanoparticles in water-in-CO2 microemulsions. <i>Chemical Communications</i> , 2002 , 152	. 8₅9 8	11
99	Mapping the Stability and Curvature of Emulsions of H2O and Supercritical CO2 with Interfacial Tension Measurements. <i>Journal of Dispersion Science and Technology</i> , 2002 , 23, 65-80	1.5	20
98	Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2002 , 54, 221-8	5.7	72
97	A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2002 , 54, 271-80	5.7	114
96	Concentrated CO(2)-in-Water Emulsions with Nonionic Polymeric Surfactants. <i>Journal of Colloid and Interface Science</i> , 2001 , 239, 241-253	9.3	79
95	Highly luminescent silicon nanocrystals with discrete optical transitions. <i>Journal of the American Chemical Society</i> , 2001 , 123, 3743-8	16.4	429
94	Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. <i>Drug Development and Industrial Pharmacy</i> , 2001 , 27, 1003-15	3.6	113
93	Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7797-803	16.4	187
92	Catalysis in supercritical CO2 using dendrimer-encapsulated palladium nanoparticles. <i>Chemical Communications</i> , 2001 , 2290-2291	5.8	83
91	Structural and Dynamical Origins of Ionic Mobilities in Supercritical Water. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 9302-9307	3.4	29
90	Nanocrystal Arrested Precipitation in Supercritical Carbon Dioxide. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 9433-9440	3.4	92
89	Water in Carbon Dioxide Macroemulsions and Miniemulsions with a Hydrocarbon Surfactant. <i>Langmuir</i> , 2001 , 17, 7191-7193	4	59
88	Latexes Formed by Rapid Expansion of Polymer/CO2 Suspensions into Water. 1. Hydrophilic Surfactant in Supercritical CO2. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 536-543	3.9	6
87	Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent. <i>AICHE Journal</i> , 2000 , 46, 857-865	3.6	143
86	Block copolymers as stabilizers in supercritical fluids. <i>Current Opinion in Colloid and Interface Science</i> , 2000 , 5, 350-355	7.6	34
85	Steric stabilization of inorganic suspensions in carbon dioxide. <i>Journal of Supercritical Fluids</i> , 2000 , 16, 247-260	4.2	43
84	Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. <i>Biotechnology Progress</i> , 2000 , 16, 402-7	2.8	105

83	Control of thickness and orientation of solution-grown silicon nanowires. <i>Science</i> , 2000 , 287, 1471-3	33.3	1369
82	Steric Stabilization of Nanocrystals in Supercritical CO2 Using Fluorinated Ligands. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4245-4246	16.4	112
81	Percolation in Concentrated Water-in-Carbon Dioxide Microemulsions. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 4448-4456	3.4	49
80	Trifunctional Ambidextrous Surfactants for Latexes in Supercritical CO2and Water. <i>Macromolecules</i> , 2000 , 33, 1606-1612	5.5	28
79	In-Situ Investigation on the Mechanism of Dispersion Polymerization in Supercritical Carbon Dioxide. <i>Macromolecules</i> , 2000 , 33, 4008-4014	5.5	35
78	Water-in-Carbon Dioxide Emulsions with Poly(dimethylsiloxane)-Based Block Copolymer Ionomers. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 2655-2664	3.9	60
77	Interfacial Thermodynamics of Surfactants at the CO2Water Interface. <i>Langmuir</i> , 2000 , 16, 3690-3695	4	68
76	Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent. <i>Journal of Pharmaceutical Sciences</i> , 1999 , 88, 640-50	3.9	82
75	Effect of Surfactants on the Interfacial Tension and Emulsion Formation between Water and Carbon Dioxide. <i>Langmuir</i> , 1999 , 15, 419-428	4	151
74	Synthesis of Cadmium Sulfide Q Particles in Water-in-CO2Microemulsions. <i>Langmuir</i> , 1999 , 15, 6613-66	154	112
73	Buffering the Aqueous Phase pH in Water-in-CO2Microemulsions. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 5703-5711	3.4	90
72	Water-in-Carbon Dioxide Emulsions: Formation and Stability. <i>Langmuir</i> , 1999 , 15, 6781-6791	4	141
71	Organic Synthesis in Water/Carbon Dioxide Microemulsions. <i>Journal of Organic Chemistry</i> , 1999 , 64, 12	01 4 .120	682
70	Enhanced Catalyst Reactivity and Separations Using Water/Carbon Dioxide Emulsions. <i>Journal of the American Chemical Society</i> , 1999 , 121, 11902-11903	16.4	100
69	Polymer Coatings by Rapid Expansion of Suspensions in Supercritical Carbon Dioxide. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 3655-3662	3.9	34
68	Density Dependence of Homopolymer Adsorption and Colloidal Interaction Forces in a Supercritical Solvent: Monte Carlo Simulation. <i>Langmuir</i> , 1999 , 15, 8037-8044	4	16
67	Artificial Atoms of Silicon. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 582, 62		1
66	Phase behavior of poly(1,1-dihydroperfluorooctylacrylate) in supercritical carbon dioxide. <i>Fluid</i>	2.5	49

65	Theory of Polymer Adsorption and Colloid Stabilization in Supercritical Fluids. 2. Copolymer and End-Grafted Stabilizers. <i>Macromolecules</i> , 1998 , 31, 5518-5528	5.5	53
64	Interfacial Activity of Polymeric Surfactants at the Polystyrene©arbon Dioxide Interface. <i>Langmuir</i> , 1998 , 14, 6855-6863	4	40
63	Poly(vinyl acetate) and Poly(vinyl acetate-co-ethylene) Latexes via Dispersion Polymerizations in Carbon Dioxide. <i>Macromolecules</i> , 1998 , 31, 6794-6805	5.5	89
62	Theory of Polymer Adsorption and Colloid Stabilization in Supercritical Fluids. 1. Homopolymer Stabilizers. <i>Macromolecules</i> , 1998 , 31, 5507-5517	5.5	26
61	UVIV is Spectroscopic Determination of the Dissociation Constant of Bichromate from 160 to 400 °C. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 3993-4003	3.4	49
60	Boric Acid Equilibria in Near-Critical and Supercritical Water. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 2045-2051	3.9	23
59	Simulation of phase equilibria for polymer upercritical solvent mixtures. <i>Journal of Chemical Physics</i> , 1998 , 108, 4647-4653	3.9	39
58	Simulation of structure and interaction forces for surfaces coated with grafted chains in a compressible solvent. <i>Journal of Chemical Physics</i> , 1998 , 109, 6424-6434	3.9	39
57	Relationship between polymer chain conformation and phase boundaries in a supercritical fluid. <i>Journal of Chemical Physics</i> , 1997 , 107, 10782-10792	3.9	81
56	Stabilized Polymer Microparticles by Precipitation with a Compressed Fluid Antisolvent. 1. Poly(fluoro acrylates). <i>Macromolecules</i> , 1997 , 30, 71-77	5.5	61
55	Stabilized Polymer Microparticles by Precipitation with a Compressed Fluid Antisolvent. 2. Poly(propylene oxide)- and Poly(butylene oxide)-Based Copolymers. <i>Langmuir</i> , 1997 , 13, 1519-1528	4	53
54	Solubility of Block Copolymer Surfactants in Compressed CO2 Using a Lattice Fluid Hydrogen-Bonding Model. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 2821-2833	3.9	22
53	Swelling of Polystyrene Latex Particles in Water by High-Pressure Carbon Dioxide. <i>Langmuir</i> , 1997 , 13, 3047-3051	4	37
52	Water Core within Perfluoropolyether-Based Microemulsions Formed in Supercritical Carbon Dioxide. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 6707-6714	3.4	92
51	Water in Supercritical Carbon Dioxide Microemulsions: Spectroscopic Investigation of a New Environment for Aqueous Inorganic Chemistry. <i>Journal of the American Chemical Society</i> , 1997 , 119, 63	399-640	197
50	Acid-base behavior in supercritical water: Ehaphthoic acid-ammonia equilibrium. <i>Journal of Solution Chemistry</i> , 1997 , 26, 13-30	1.8	7
49	Metastable polymer blends by precipitation with a compressed fluid antisolvent. <i>Polymer</i> , 1997 , 38, 29	95 <u>7</u> . 3 96	5735
48	Coaxial nozzle for control of particle morphology in precipitation with a compressed fluid antisolvent. <i>Journal of Applied Polymer Science</i> , 1997 , 64, 2105-2118	2.9	89

[1993-1996]

47	Effect of Surfactants on the Interfacial Tension between Supercritical Carbon Dioxide and Polyethylene Glycol. <i>Langmuir</i> , 1996 , 12, 2637-2644	4	74
46	Partition Coefficients and PolymerBolute Interaction Parameters by Inverse Supercritical Fluid Chromatography. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 1115-1123	3.9	51
45	Spectroscopy: the fourth vertex on the molecular thermodynamics tetrahedron. <i>Fluid Phase Equilibria</i> , 1996 , 116, 385-394	2.5	9
44	Quantitative Equilibrium Constants between CO2 and Lewis Bases from FTIR Spectroscopy. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 10837-10848		145
43	Monte Carlo simulation of polymer chain collapse in athermal solvents. <i>Journal of Chemical Physics</i> , 1996 , 104, 9971-9973	3.9	41
42	Toxicology of a PFPE Surfactant. <i>Science</i> , 1996 , 272, 1726-1726	33.3	1
41	Semicrystalline microfibrils and hollow fibres by precipitation with a compressed-fluid antisolvent. <i>Polymer</i> , 1995 , 36, 3173-3182	3.9	67
40	Polymeric microspheres prepared by spraying into compressed carbon dioxide. <i>Pharmaceutical Research</i> , 1995 , 12, 1211-7	4.5	141
39	Formation of Poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) Submicron Fibers and Particles from Supercritical Carbon Dioxide Solutions. <i>Macromolecules</i> , 1995 , 28, 3182-3191	5.5	172
38	Dispersion Polymerization of Methyl Methacrylate Stabilized with Poly(1,1-dihydroperfluorooctyl acrylate) in Supercritical Carbon Dioxide. <i>Macromolecules</i> , 1995 , 28, 8159-8166	5.5	178
37	Simulation and Spectroscopy of Solvation in Water from Ambient to Supercritical Conditions. <i>ACS Symposium Series</i> , 1995 , 77-92	0.4	7
36	Recovery of proteins and amino acids from reverse micelles by dehydration with molecular sieves. <i>Biotechnology and Bioengineering</i> , 1994 , 44, 830-6	4.9	29
35	Solubilization in nonionic reverse micelles in carbon dioxide. <i>AICHE Journal</i> , 1994 , 40, 543-555	3.6	123
34	Microcellular microspheres and microballoons by precipitation with a vapour-liquid compressed fluid antisolvent. <i>Polymer</i> , 1994 , 35, 3998-4005	3.9	92
33	Ion Hydration in Supercritical Water. Industrial & Engineering Chemistry Research, 1994, 33, 2819-2	82 99	12
32	Water-in-Carbon Dioxide Microemulsions with a Fluorocarbon-Hydrocarbon Hybrid Surfactant. <i>Langmuir</i> , 1994 , 10, 3536-3541	4	244
31	Lattice fluid self-consistent field theory of surfaces with anchored chains. <i>Macromolecules</i> , 1993 , 26, 1537-1545	5.5	48
30	Phase behavior of nonionic surfactant/oil/water systems containing light alkanes. <i>Langmuir</i> , 1993 , 9, 2942-2948	4	46

29	Prediction of interfacial properties of microemulsions: the lattice fluid self-consistent field theory. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 5661-5667		29
28	Formation of microporous polymer fibers and oriented fibrils by precipitation with a compressed fluid antisolvent. <i>Journal of Applied Polymer Science</i> , 1993 , 50, 1929-1942	2.9	93
27	Polymeric materials formed by precipitation with a compressed fluid antisolvent. <i>AICHE Journal</i> , 1993 , 39, 127-139	3.6	273
26	Partial derivative quantities from phase equilibria relationships for mixtures. <i>AICHE Journal</i> , 1993 , 39, 1363-1369	3.6	1
25	Spectroscopic studies of p-(N,N-dimethylamino)benzonitrile and ethyl p-(N,N-dimethylamino)benzoate in supercritical trifluoromethane, carbon dioxide, and ethane. <i>Journal of the American Chemical Society</i> , 1992 , 114, 1187-1194	16.4	115
24	Theory of hydrogen bonding in supercritical fluids. AICHE Journal, 1992, 38, 1243-1253	3.6	70
23	Theory of the pressure effect on the curvature and phase behavior of AOT/propane/brine water-in-oil microemulsions. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 9549-9556		40
22	PHOTOLYSIS OF DIBENZYLKETONES IN SUPERCRITICAL ETHANE and CARBON DIOXIDE*. <i>Photochemistry and Photobiology</i> , 1991 , 54, 571-576	3.6	30
21	Molecular thermodynamics of solute-polymer-supercritical fluid systems. AICHE Journal, 1991, 37, 607-6	53.6	52
20	Molecular thermodynamics of solubilities in gas antisolvent crystallization. AICHE Journal, 1991, 37, 144	3.644	992
19	Predictability and effect of phase behavior of CO2/propylene carbonate in supercritical fluid chromatography. <i>Journal of Separation Science</i> , 1991 , 3, 355-369		10
18	Phase behavior of AOT microemulsions in compressible liquids. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 4889-4896		59
17	Polar and hydrogen-bonding interactions in supercritical fluids: effects on the tautomeric equilibrium of 4-(phenylazo)-1-naphthol. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 7863-7867		83
16	Solubilities and selectivities in supercritical fluid mixtures near critical end points. <i>Fluid Phase Equilibria</i> , 1990 , 59, 31-55	2.5	31
15	Reverse micelles in supercritical fluids. 2. Fluorescence and absorption spectral probes of adjustable aggregation in the two-phase region. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 7224-7232		29
14	Reverse micelles in supercritical fluids. 3. Amino acid solubilization in ethane and propane. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 6021-6028		45
13	Design and Characterization of the Molecular Environment in Supercritical Fluids. <i>Fluid Phase Equilibria</i> , 1989 , 52, 337-346	2.5	20
12	Adjustable solute distribution between polymers and supercritical fluids. <i>AICHE Journal</i> , 1989 , 35, 1097	-3.1606	90

LIST OF PUBLICATIONS

11	Solid-liquid-gas equilibria in multicomponent supercritical fluid systems. <i>Fluid Phase Equilibria</i> , 1989 , 45, 265-286	2.5	55
10	Modeling supercritical mixtures: how predictive is it?. <i>Industrial & amp; Engineering Chemistry Research</i> , 1989 , 28, 1115-1125	3.9	130
9	Pressure Tuning of Reverse Micelles for Adjustable Solvation of Hydrophiles in Supercritical Fluids. <i>ACS Symposium Series</i> , 1989 , 140-164	0.4	12
8	Modelling the solubility of solids in supercritical fluids with density as the independent variable. <i>Journal of Supercritical Fluids</i> , 1988 , 1, 15-22	4.2	283
7	ADJUSTMENT OF THE SELECTIVITY OF A DIELS-ALDER REACTION NETWORK USING SUPERCRITICAL FLUIDS. <i>Chemical Engineering Communications</i> , 1988 , 63, 49-59	2.2	47
6	Molecular interactions in dilute supercritical fluid solutions. <i>Industrial & amp; Engineering Chemistry Research</i> , 1987 , 26, 1206-1213	3.9	172
5	Selectivities in pure and mixed supercritical fluid solvents. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 1476-1482	3.9	116
4	Local composition models for fluid mixtures over a wide density range. <i>Fluid Phase Equilibria</i> , 1987 , 38, 39-62	2.5	9
3	Nonpolar co-solvents for solubility enhancement in supercritical fluid carbon dioxide. <i>Journal of Chemical & </i>	2.8	162
2	State-of-the-art on the supercritical extraction of organics from hazardous wastes. <i>Critical Reviews in Environmental Control</i> , 1985 , 15, 237-274		25
1	Solubilities of hydrocarbon solids in supercritical fluids. The augmented van der Waals treatment. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1982 , 21, 191-197		182