
Davor Antanasijević

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2833128/publications.pdf Version: 2024-02-01

DAVOR ANTANASUEVIÄT

#	Article	IF	CITATIONS
1	PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Science of the Total Environment, 2013, 443, 511-519.	8.0	143
2	Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. Journal of Hydrology, 2014, 519, 1895-1907.	5.4	94
3	The forecasting of municipal waste generation using artificial neural networks and sustainability indicators. Sustainability Science, 2013, 8, 37-46.	4.9	82
4	Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Environmental Science and Pollution Research, 2013, 20, 9006-9013.	5.3	77
5	Review: The approaches for estimation of limit of detection for ICP-MS trace analysis of arsenic. Talanta, 2012, 102, 79-87.	5.5	64
6	A linear and non-linear polynomial neural network modeling of dissolved oxygen content in surface water: Inter- and extrapolation performance with inputs' significance analysis. Science of the Total Environment, 2018, 610-611, 1038-1046.	8.0	57
7	A differential multi-criteria analysis for the assessment of sustainability performance of European countries: Beyond country ranking. Journal of Cleaner Production, 2017, 165, 213-220.	9.3	56
8	Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks. Energy, 2015, 84, 816-824.	8.8	54
9	Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis. Environmental Science and Pollution Research, 2017, 24, 299-311.	5.3	54
10	Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis. International Journal of Greenhouse Gas Control, 2014, 20, 244-253.	4.6	50
11	Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions. Atmospheric Pollution Research, 2018, 9, 388-397.	3.8	32
12	Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model. Air Quality, Atmosphere and Health, 2017, 10, 15-23.	3.3	25
13	Virtual water quality monitoring at inactive monitoring sites using Monte Carlo optimized artificial neural networks: A case study of Danube River (Serbia). Science of the Total Environment, 2019, 654, 1000-1009.	8.0	25
14	Multilevel split of high-dimensional water quality data using artificial neural networks for the prediction of dissolved oxygen in the Danube River. Neural Computing and Applications, 2020, 32, 3957-3966.	5.6	25
15	Lead concentrations and isotope ratios in urban tree leaves. Ecological Indicators, 2013, 24, 504-509.	6.3	24
16	Application of experimental design for the optimization of artificial neural network-based water quality model: a case study of dissolved oxygen prediction. Environmental Science and Pollution Research, 2018, 25, 9360-9370.	5.3	24
17	An artificial neural network approach for the estimation of the primary production of energy from municipal solid waste and its application to the Balkan countries. Waste Management, 2018, 78, 955-968.	7.4	24
18	An optimized artificial neural network model for the prediction of rate of hazardous chemical and healthcare waste generation at the national level. Journal of Material Cycles and Waste Management, 2018, 20, 1736-1750.	3.0	23

DAVOR ANTANASIJEVIć

#	Article	IF	CITATIONS
19	Forecasting human exposure to PM10 at the national level using an artificial neural network approach. Journal of Chemometrics, 2013, 27, 170-177.	1.3	22
20	Chemometrics in biomonitoring: Distribution and correlation of trace elements in tree leaves. Science of the Total Environment, 2016, 545-546, 361-371.	8.0	22
21	A QSPR study on the liquid crystallinity of five-ring bent-core molecules using decision trees, MARS and artificial neural networks. RSC Advances, 2016, 6, 18452-18464.	3.6	21
22	Persistent organic pollutants (POPs) in edible fish species from different fishing zones of Croatian Adriatic. Marine Pollution Bulletin, 2018, 137, 71-80.	5.0	21
23	Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations. Environmental Science and Pollution Research, 2015, 22, 4230-4241.	5.3	19
24	Concentrations of selected trace elements in mineral and spring bottled waters on the Serbian market. Food Additives and Contaminants: Part B Surveillance, 2011, 4, 6-14.	2.8	18
25	Lead isotopic composition in tree leaves as tracers of lead in an urban environment. Ecological Indicators, 2014, 45, 640-647.	6.3	18
26	From Classification to Regression Multitasking QSAR Modeling Using a Novel Modular Neural Network: Simultaneous Prediction of Anticonvulsant Activity and Neurotoxicity of Succinimides. Molecular Pharmaceutics, 2017, 14, 4476-4484.	4.6	17
27	Unsupervised classification and multi-criteria decision analysis as chemometric tools for the assessment of sediment quality: A case study of the Danube and Sava River. Catena, 2016, 144, 11-22.	5.0	16
28	The significance of periodic parameters for ANN modeling of daily SO2 and NOx concentrations: A case study of Belgrade, Serbia. Atmospheric Pollution Research, 2019, 10, 621-628.	3.8	16
29	Urban deciduous tree leaves as biomonitors of trace element (AS, V and Cd) atmospheric pollution in Belgrade, Serbia. Journal of the Serbian Chemical Society, 2010, 75, 1453-1461.	0.8	15
30	Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Cyprinidae fish: Towards hints of their arrangements using advanced classification methods. Environmental Research, 2018, 165, 349-357.	7.5	14
31	Lead spatio-temporal pattern identification in urban microenvironments using moss bags and the Kohonen self-organizing maps. Atmospheric Environment, 2015, 117, 180-186.	4.1	12
32	Prediction of clearing temperatures of bent-core liquid crystals using decision trees and multivariate adaptive regression splines. Liquid Crystals, 2016, 43, 1028-1037.	2.2	12
33	Self-organizing maps for indications of airborne polychlorinated biphenyl (PCBs) and organochlorine pesticide (OCPs) dependence on spatial and meteorological parameters. Science of the Total Environment, 2018, 628-629, 198-205.	8.0	11
34	Urban population exposure to tropospheric ozone: A multi-country forecasting of SOMO35 using artificial neural networks. Environmental Pollution, 2019, 244, 288-294.	7.5	11
35	A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals. RSC Advances, 2016, 6, 99676-99684.	3.6	10
36	Modeling the BOD of Danube River in Serbia using spatial, temporal, and input variables optimized artificial neural network models. Environmental Monitoring and Assessment, 2016, 188, 300.	2.7	10

#	Article	IF	CITATIONS
37	Application of artificial neural networks for estimating Cd, Zn, Pb removal efficiency from wastewater using complexation-microfiltration process. International Journal of Environmental Science and Technology, 2017, 14, 1383-1396.	3.5	10
38	Experimental and theoretical consideration of the factors influencing cationic pollutants retention by seashell waste. Journal of Chemical Technology and Biotechnology, 2018, 93, 1477-1487.	3.2	9
39	Modeling of methane emissions using artificial neural network approach. Journal of the Serbian Chemical Society, 2015, 80, 421-433.	0.8	8
40	The Prediction of Heavy Metal Permeate Flux in Complexation-Microfiltration Process: Polynomial Neural Network Approach. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	8
41	A Chemometrical Analysis of Voltammetric Data for Simultaneous Determination of Phenobarbital Sodium and Paracetamol Obtained at a Gold Electrode. International Journal of Electrochemical Science, 2016, 11, 5935-5951.	1.3	7
42	Estimation of NMVOC emissions using artificial neural networks and economical and sustainability indicators as inputs. Environmental Science and Pollution Research, 2016, 23, 10753-10762.	5.3	7
43	The novel approach to the biomonitor survey using one- and two-dimensional Kohonen networks. Environmental Monitoring and Assessment, 2015, 187, 618.	2.7	5
44	Modeling of ammonia emission in the USA and EU countries using an artificial neural network approach. Environmental Science and Pollution Research, 2015, 22, 18849-18858.	5.3	5
45	A novel SON ² â€based similarity index and its application for the rationalization of river water quality monitoring network. River Research and Applications, 2018, 34, 144-152.	1.7	5
46	Effect of compositional data in the multivariate analysis of sterol concentrations in river sediments. Microchemical Journal, 2018, 139, 188-195.	4.5	4
47	Prediction of the transition temperature of bent-core liquid crystals using fuzzy "digital thermometer―model based on artificial neural networks. Engineering Applications of Artificial Intelligence, 2018, 71, 251-258.	8.1	4
48	Plants as Monitors of Lead Air Pollution. Environmental Chemistry for A Sustainable World, 2013, , 387-431.	0.5	4
49	Prediction of hardness and electrical properties in ZrB2 particle reinforced metal matrix composites using artificial neural network. Metallurgical and Materials Engineering, 2014, 20, 255-260.	0.5	2
50	Response to comment of Taher Rajaee and Salar Khani on "Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations―[Åiljić et al., Environ Sci Pollut Res (2015) 22: 4230-4241]. Environmental Science and Pollution Research, 2016, 23, 3978-3979.	5.3	1
51	Migration of cypermethrin to and through the PET containers and artificial neural network–based estimation of its emission. Environmental Science and Pollution Research, 2019, 26, 28933-28939.	5.3	1
52	Analysis of selected elements in water in the drinking water preparation plants in Belgrade, Serbia. Hemijska Industrija, 2011, 65, 187-196.	0.7	1
53	Selected trace element concentrations in ambient air and in horse chestnut leaves in Belgrade. Chemical Industry and Chemical Engineering Quarterly, 2015, 21, 169-178.	0.7	0