Anders Larsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2831987/publications.pdf

Version: 2024-02-01

76196 106150 5,573 179 40 65 citations h-index g-index papers 179 179 179 2245 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Large-Signal Equivalent Circuit for Datacom VCSELs. Journal of Lightwave Technology, 2021, 39, 3225-3236.	2.7	6
2	VCSEL Wavelength Setting by Intra-Cavity Phase Tuning $\hat{a}\in$ " Numerical Analysis and Experimental Verification. IEEE Journal of Quantum Electronics, 2021, 57, 1-7.	1.0	3
3	Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing. Optica, 2021, 8, 1573.	4.8	24
4	Monolithic Multi-Wavelength VCSEL Arrays with Uniform Performance by Intra-Cavity Phase Tuning. , 2021, , .		1
5	Noise Performance of Single-Mode VCSELs: Dependence on Current Confinement and Optical Loss. IEEE Journal of Quantum Electronics, 2020, 56, 1-9.	1.0	0
6	Si ₃ N ₄ photonic integration platform at 1 µm for optical interconnects. Optics Express, 2020, 28, 13019.	1.7	12
7	The Future of VCSELs: Dynamics and Speed Limitations. , 2020, , .		5
8	Precise setting of micro-cavity resonance wavelength by dry etching. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	6
9	1060 nm Single-Mode VCSEL and Single-Mode Fiber Links for Long-Reach Optical Interconnects. Journal of Lightwave Technology, 2019, 37, 2963-2969.	2.7	29
10	High-power single transverse and polarization mode VCSEL for silicon photonics integration. Optics Express, 2019, 27, 18892.	1.7	33
11	Verticalâ€Cavity Siliconâ€Integrated Laser with Inâ€Plane Waveguide Emission at 850Ânm. Laser and Photonics Reviews, 2018, 12, 1700206.	4.4	23
12	Large-Signal Circuit Model for Datacom VCSELs. , 2018, , .		1
13	Power Efficient Modulation Formats for Error-Free VeSEL MMF Links. , 2018, , .		O
14	Hybrid vertical-cavity laser integration on silicon. , 2017, , .		1
15	VCSEL design and integration for high-capacity optical interconnects. Proceedings of SPIE, 2017, , .	0.8	7
16	High-speed optical interconnects with 850nm VCSELS and advanced modulation formats. Proceedings of SPIE, 2017, , .	0.8	0
17	Silicon-Integrated Hybrid-Cavity 850-nm VCSELs by Adhesive Bonding: Impact of Bonding Interface Thickness on Laser Performance. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-9.	1.9	18
18	Impact of Damping on 50 Gbps 4-PAM Modulation of 25G Class VCSELs. Journal of Lightwave Technology, 2017, 35, 4203-4209.	2.7	19

#	Article	IF	CITATIONS
19	Design of an 845-nm GaAs Vertical-Cavity Silicon-Integrated Laser with an Intracavity Grating for Coupling to a SiN Waveguide Circuit. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	9
20	Investigation of Si and O Donor Impurities in Unintentionally Doped MBE-Grown GaN on SiC(0001) Substrate. Journal of Electronic Materials, 2017, 46, 4898-4902.	1.0	6
21	Optoelectronics Enabled Dense Patch Antenna Array for Future 5G Cellular Applications. , 2017, , .		2
22	Error-Free 100Gbps PAM-4 Transmission over 100m Wideband Fiber using 850nm VCSELs., 2017, , .		11
23	Stepâ€flow growth of GaN(0001) on 4Hâ€SiC(0001) by plasmaâ€assisted molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2498-2502.	0.8	2
24	70+Gb/s VCSEL-Based Multimode Fiber Links. , 2016, , .		4
25	Investigation of 60 Gb/s 4-PAM Using an 850 nm VCSEL and Multimode Fiber. Journal of Lightwave Technology, 2016, 34, 3825-3836.	2.7	24
26	94-Gb/s 4-PAM Using an 850-nm VCSEL, Pre-Emphasis, and Receiver Equalization. IEEE Photonics Technology Letters, 2016, 28, 2519-2521.	1.3	42
27	An Energy Efficient 56 Gbps PAM-4 VCSEL Transmitter Enabled by a 100 Gbps Driver in 0.25 νm InP DHBT Technology. Journal of Lightwave Technology, 2016, 34, 4954-4964.	2.7	33
28	Dynamic properties of silicon-integrated short-wavelength hybrid-cavity VCSEL., 2016,,.		1
29	20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs. IEEE Photonics Technology Letters, 2016, 28, 856-859.	1.3	13
30	High-Speed VCSELs With Strong Confinement of Optical Fields and Carriers. Journal of Lightwave Technology, 2016, 34, 269-277.	2.7	34
31	Integration of 150 Gbps/fiber optical engines based on multicore fibers and 6-channel VCSELs and PDs. Proceedings of SPIE, 2016, , .	0.8	2
32	Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications. , 2015, , .		3
33	Sensitivity improvements in an 850 nm VCSEL transmitter using a one-tap pre-emphasis electronic filter. , 2015, , .		3
34	Impact of forward error correction on energy consumption of VCSEL-based transmitters., 2015,,.		1
35	40 Gb/s Data Transmission Over a 1-m-Long Multimode Polymer Spiral Waveguide for Board-Level Optical Interconnects. Journal of Lightwave Technology, 2015, 33, 882-888.	2.7	41
36	Silicon-integrated short-wavelength hybrid-cavity VCSEL. Optics Express, 2015, 23, 33634.	1.7	30

3

#	Article	IF	Citations
37	A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link. IEEE Photonics Technology Letters, 2015, 27, 577-580.	1.3	277
38	70 Gbps 4-PAM and 56 Gbps 8-PAM Using an 850 nm VCSEL. Journal of Lightwave Technology, 2015, 33, 1395-1401.	2.7	84
39	High-speed VCSELs and VCSEL arrays for single- and multi-core fiber interconnects. Proceedings of SPIE, 2015, , .	0.8	9
40	Crosstalk Characteristics and Performance of VCSEL Array for Multicore Fiber Interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 429-435.	1.9	5
41	Energy Efficiency of VCSELs in the Context of Short-Range Optical Links. IEEE Photonics Technology Letters, 2015, 27, 1749-1752.	1.3	10
42	48.7-Gb/s 4-PAM Transmission Over 200 m of High Bandwidth MMF Using an 850-nm VCSEL. IEEE Photonics Technology Letters, 2015, 27, 1799-1801.	1.3	18
43	VCSEL Arrays for Multicore Fiber Interconnects With an Aggregate Capacity of 240 Gb/s. IEEE Photonics Technology Letters, 2015, 27, 296-299.	1.3	36
44	Impact of Damping on High-Speed Large Signal VCSEL Dynamics. Journal of Lightwave Technology, 2015, 33, 795-801.	2.7	51
45	A 50 Gb/s NRZ Modulated 850 nm VCSEL Transmitter Operating Error Free to 90 °C. Journal of Lightwave Technology, 2015, 33, 802-810.	2.7	71
46	Impact of Damping on Large Signal VCSEL Dynamics. , 2014, , .		0
47	20ÂGbit/s data transmission over 2Âkm multimode fibre using 850Ânm mode filter VCSEL. Electronics Letters, 2014, 50, 40-42.		
	Letters, 2014, 30, 40-42.	0.5	44
48	60ÂGbits errorâ€free 4â€PAM operation with 850Ânm VCSEL. Electronics Letters, 2013, 49, 953-955.	0.5	56
49			
	60ÂGbits errorâ€free 4â€PAM operation with 850Ânm VCSEL. Electronics Letters, 2013, 49, 953-955. High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85 <formula formulatype="inline"><tex notation="TeX">\$^{circ}{m C}\$</tex></formula> . IEEE	0.5	56
49	60ÂGbits errorâ€free 4â€PAM operation with 850Ânm VCSEL. Electronics Letters, 2013, 49, 953-955. High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85 <formula formulatype="inline"><tex notation="TeX">\$^{circ}{m C}\$</tex></formula> . IEEE Photonics Technology Letters, 2013, 25, 768-771.	0.5	56
49 50	60ÂGbits errorâ€free 4â€PAM operation with 850Ânm VCSEL. Electronics Letters, 2013, 49, 953-955. High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85 <formula formulatype="inline"><tex notation="TeX">\$^{circ}{m C}\$</tex></formula> . IEEE Photonics Technology Letters, 2013, 25, 768-771. Highâ€speed 850Ânm VCSELs operating error free up to 57ÂGbit/s. Electronics Letters, 2013, 49, 1021-1023. Comparison of Intersymbol Interference Power Penalties for OOK and 4-PAM in Short-Range Optical	0.5 1.3 0.5	56 104 128
49 50 51	60ÂGbits errorâ€free 4â€PAM operation with 850Ânm VCSEL. Electronics Letters, 2013, 49, 953-955. High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85 <formula formulatype="inline"><tex notation="TeX">\$^{circ}{m C}\$</tex></formula> . IEEE Photonics Technology Letters, 2013, 25, 768-771. Highâ€speed 850Ânm VCSELs operating error free up to 57ÂGbit/s. Electronics Letters, 2013, 49, 1021-1023. Comparison of Intersymbol Interference Power Penalties for OOK and 4-PAM in Short-Range Optical Links. Journal of Lightwave Technology, 2013, 31, 3525-3534. High-Speed 850Ânm Quasi-Single-Mode VCSELs for Extended-Reach Optical Interconnects. Journal of	0.5 1.3 0.5	56 104 128

#	Article	IF	Citations
55	22 Gb/s error-free data transmission beyond 1 km of multi-mode fiber using 850 nm VCSELs. , 2013, , .		0
56	Intersymbol Interference Penalties for OOK and 4-PAM in Short-range Optical Communications. , 2013, , .		6
57	25â€Gbit/s transmission over 500â€m multimode fibre using 850â€nm VCSEL with integrated mode filter. Electronics Letters, 2012, 48, 517.	0.5	45
58	4-PAM for High-Speed Short-Range Optical Communications. Journal of Optical Communications and Networking, 2012, 4, 885.	3.3	117
59	Design and Fabrication of AlN/GaN Heterostructures for Intersubband Technology. Japanese Journal of Applied Physics, 2012, 51, 01AG07.	0.8	1
60	Integrated MEMS-tunable VCSELs for reconfigurable optical interconnects. , 2012, , .		0
61	Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter. Proceedings of SPIE, 2012, , .	0.8	17
62	Impact of photon lifetime on thermal rollover in 850-nm high-speed VCSELs. Proceedings of SPIE, 2012, ,	0.8	2
63	Direct Chemical Vapor Deposition of Large-Area Carbon Thin Films on Gallium Nitride for Transparent Electrodes: A First Attempt. IEEE Transactions on Semiconductor Manufacturing, 2012, 25, 494-501.	1.4	23
64	High-speed 850â€nm VCSELs with 28â€GHz modulation bandwidth operating error-free up to 44â€Gbit/s. Electronics Letters, 2012, 48, 1145-1147.	0.5	124
65	Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process. IEEE Journal of Quantum Electronics, 2012, 48, 144-152.	1.0	20
66	Impact of Device Parameters on Thermal Performance of High-Speed Oxide-Confined 850-nm VCSELs. IEEE Journal of Quantum Electronics, 2012, 48, 17-26.	1.0	20
67	Design and Fabrication of AlN/GaN Heterostructures for Intersubband Technology. Japanese Journal of Applied Physics, 2012, 51, 01AG07.	0.8	2
68	Full characterization of a high-power semiconductor disk laser beam with simultaneous capture of optimally sized focus and farfield. Applied Optics, 2011, 50, 1640.	2.1	10
69	Experimental comparison of modulation formats in IM/DD links. Optics Express, 2011, 19, 9881.	1.7	7
70	Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling. Optics Express, 2011, 19, 15490.	1.7	58
71	Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping. Optics Express, 2011, 19, 16890.	1.7	15
72	30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL. Optics Express, 2011, 19, B203.	1.7	54

#	Article	IF	CITATIONS
73	Realization of spectrally engineered semiconductor Fabry-Perot lasers with narrow geometrical tolerances. Journal of Applied Physics, 2011, 109, 093112.	1.1	2
74	Method for Measuring Reflectance of Semiconductor Disk Laser Gain Element Under Optical Pump Excitation. , $2011,\ldots$		0
7 5	Higher speed VCSELs by photon lifetime reduction. Proceedings of SPIE, 2011, , .	0.8	7
76	Impact of Photon Lifetime on High-Speed VCSEL Performance. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1603-1613.	1.9	170
77	Advances in VCSELs for Communication and Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1552-1567.	1.9	223
78	Waveguides for nitride based quantum cascade lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2357-2359.	0.8	10
79	High-speed VCSELs for short reach communication. Semiconductor Science and Technology, 2011, 26, 014017.	1.0	24
80	High-speed low-current-density 850 nm VCSELs. Proceedings of SPIE, 2010, , .	0.8	3
81	High-speed 850-nm VCSELs for 40-Gb/s transmission. Proceedings of SPIE, 2010, , .	0.8	1
82	40â€Gbit/s error-free operation of oxide-confined 850â€nm VCSEL. Electronics Letters, 2010, 46, 1014.	0.5	98
83	Active Region Design for High-Speed 850-nm VCSELs. IEEE Journal of Quantum Electronics, 2010, 46, 506-512.	1.0	69
84	Temperature stability of intersubband transitions in AlN/GaN quantum wells. Applied Physics Letters, 2010, 97, 043507.	1.5	16
85	Advances in VCSELs for communication and sensing. , 2010, , .		3
86	Speed enhancement of VCSELs by photon lifetime reduction. Electronics Letters, 2010, 46, 938.	0.5	33
87	Optimization of a Broadband Gain Element for a Widely Tunable High-Power Semiconductor Disk Laser. IEEE Photonics Technology Letters, 2010, 22, 978-980.	1.3	19
88	Spectral engineering of semiconductor Fabry-Perot laser cavities in the weakly and strongly perturbed regimes. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 118.	0.9	10
89	Widely tunable high-speed bulk-micromachined short-wavelength MEMS-VCSEL. , 2010, , .		6
90	32â€Gbit/s multimode fibre transmission using high-speed, low current density 850â€nm VCSEL. Electronics Letters, 2009, 45, 366.	0.5	71

#	Article	IF	CITATIONS
91	High-Speed, Low-Current-Density 850 nm VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 694-703.	1.9	126
92	Impedance Characteristics and Parasitic Speed Limitations of High-Speed 850-nm VCSELs. IEEE Photonics Technology Letters, 2009, 21, 1840-1842.	1.3	50
93	FOCUS ON ADVANCED SEMICONDUCTOR HETEROSTRUCTURES FOR OPTOELECTRONICS. New Journal of Physics, 2009, 11, 125012.	1.2	10
94	32 Gb/s Transmission Experiments Using High Speed 850 nm VCSELs. , 2009, , .		6
95	Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model. Optics Express, 2008, 16, 20789.	1.7	15
96	Effects of Lateral Diffusion on the Temperature Sensitivity of the Threshold Current for 1.3-\$mu{hbox {m}}\$ Double Quantum-Well GalnNAs–GaAs Lasers. IEEE Journal of Quantum Electronics, 2008, 44, 607-616.	1.0	24
97	Large aperture 850â€nm VCSELs operating at bit rates up to 25â€Gbit/s. Electronics Letters, 2008, 44, 907.	0.5	44
98	Single mode 1.3 νm InGaAs VCSELs for access network applications. , 2008, , .		1
99	High-Temperature Dynamics, High-Speed Modulation, and Transmission Experiments Using 1.3-\$muhbox{m}\$ InGaAs Single-Mode VCSELs. Journal of Lightwave Technology, 2007, 25, 2791-2798.	2.7	25
100	Spatiotemporal Turn-On Dynamics of Grating Relief VCSELs. IEEE Journal of Quantum Electronics, 2007, 43, 1227-1234.	1.0	9
101	Suppression of Higher Order Transverse and Oxide Modes in 1.3-\$mu\$m InGaAs VCSELs by an Inverted Surface Relief. IEEE Photonics Technology Letters, 2007, 19, 327-329.	1.3	27
102	1.58Î⅓m InGaAs quantum well laser on GaAs. Applied Physics Letters, 2007, 91, 221101.	1.5	57
103	Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating. IEEE Journal of Quantum Electronics, 2006, 42, 231-240.	1.0	32
104	Dynamics and Temperature-Dependence of 1.3-\$mu{hbox {m}}\$ GalnNAs Double Quantum-Well Lasers. IEEE Journal of Quantum Electronics, 2006, 42, 1274-1280.	1.0	25
105	Uncooled 2.5 Gb/s operation of 1.3 \hat{l} 4m GalnNAs DQW lasers over a wide temperature range. Optics Express, 2006, 14, 2753.	1.7	26
106	1.27â€[micro sign]m metamorphic InGaAs quantum well lasers on GaAs substrates. Electronics Letters, 2006, 42, 691.	0.5	27
107	10â€Gbit/s modulation of 1.3â€[micro sign]m GalnNAs lasers up to 110°C. Electronics Letters, 2006, 42, 92	50.5	32
108	Very low threshold current density $1.3\hat{l}$ /4m GalnNAs single-quantum well lasers grown by molecular beam epitaxy. Journal of Crystal Growth, 2005, 278, 734-738.	0.7	32

#	Article	IF	Citations
109	Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 1126-1134.	1.9	48
110	High performance 1.28â€[micro sign]m GalnNAs double quantum well lasers. Electronics Letters, 2005, 41, 1328.	0.5	26
111	Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating. Optics Express, 2005, 13, 6626.	1.7	33
112	Single-frequency operation of a high-power, long-wavelength semiconductor disk laser. Optics Letters, 2005, 30, 2260.	1.7	58
113	Mode locking a 1550 nm semiconductor disk laser by using a GalnNAs saturable absorber. Optics Letters, 2005, 30, 2793.	1.7	40
114	Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave links. New Journal of Physics, 2004, 6, 176-176.	1.2	35
115	Monolithic integration of lasers and passive elements using selective QW disordering by rapid thermal annealing with SiO2 caps of different thicknesses. Electronics and Communications in Japan, 2004, 87, 34-42.	0.2	3
116	Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief. IEEE Photonics Technology Letters, 2004, 16, 368-370.	1.3	185
117	RF Transmission Over Multimode Fibers Using VCSELs—Comparing Standard and High-Bandwidth Multimode Fibers. Journal of Lightwave Technology, 2004, 22, 1694-1700.	2.7	63
118	Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief. IEEE Journal of Quantum Electronics, 2004, 40, 607-619.	1.0	35
119	Optically pumped VECSEL operating at 1550 nm. , 2004, , .		2
120	0.8â€W optically pumped vertical external cavity surface emitting laser operating CW at 1550â€nm. Electronics Letters, 2004, 40, 601.	0.5	36
121	Influence of initial GaAs and AlAs cap layers on InAs quantum dots grown by molecular beam epitaxy. Journal of Crystal Growth, 2003, 251, 145-149.	0.7	38
122	Multifunctional gratings for surface-emitting lasers: design and implementation. Applied Optics, 2003, 42, 4847.	2.1	11
123	Broad-area and MOPA lasers with integrated grating components for beam shaping and novel functions. , 2003, , .		5
124	Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 $\hat{1}$ /4m. Applied Physics Letters, 2002, 81, 1621-1623.	1.5	42
125	Effects of feedback from collimating, focusing, and spot-array generating outcoupler gratings in surface-emitting semiconductor lasers. Optics Letters, 2002, 27, 574.	1.7	8
126	Input waveguide grating couplers designed for a desired wavelength and polarization response. Applied Optics, 2002, 41, 2818.	2.1	13

#	Article	IF	CITATIONS
127	Analog modulation properties of oxide confined VCSELs at microwave frequencies. Journal of Lightwave Technology, 2002, 20, 1740-1749.	2.7	67
128	Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots. Applied Physics Letters, 2002, 81, 1195-1197.	1.5	73
129	A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 2002, 38, 203-212.	1.0	65
130	High-speed digital modulation characteristics of oxide-confined vertical-cavity surface-emitting lasers-numerical simulations consistent with experimental results. IEEE Journal of Quantum Electronics, 2002, 38, 1089-1096.	1.0	32
131	Progress in Diffractive Integrated Optics. , 2002, , .		1
132	Numerical optimization of the single fundamental mode output from a surface modified vertical-cavity surface-emitting laser. IEEE Journal of Quantum Electronics, 2001, 37, 108-117.	1.0	32
133	Comparison of optical VCSEL models on the simulation of oxide-confined devices. IEEE Journal of Quantum Electronics, 2001, 37, 1618-1631.	1.0	82
134	A monolithically integrated InGaAs-AlGaAs master oscillator power amplifier with grating outcoupler. Electronics and Communications in Japan, 2001, 84, 61-70.	0.2	0
135	Diffractive optics at the surface of light-emitting/receiving semiconductor components. Journal of Modern Optics, 2000, 47, 2455-2466.	0.6	2
136	Selective Disordering of InGaAs Strained Quantum Well by Rapid Thermal Annealing with SiO2Caps of Different Thicknesses for Photonic Integration. Japanese Journal of Applied Physics, 2000, 39, 5914-5915.	0.8	10
137	Pure frequency-polarisation bistability in vertical cavity surface-emitting semiconductor laser subject to optical injection. Electronics Letters, 2000, 36, 2019.	0.5	42
138	Integrated Distributed Bragg Reflector Laser with Grating Coupler for Divergent Spherical Wave Emission. Japanese Journal of Applied Physics, 2000, 39, 124-125.	0.8	0
139	Monolithically Integrated Master Oscillator Power Amplifier with Grating Coupler for Collimated Output Beam. Japanese Journal of Applied Physics, 2000, 39, 1503-1507.	0.8	13
140	Fabrication and characterization of diffractive optical elements in InP for monolithic integration with surface-emitting components. Applied Optics, 2000, 39, 398.	2.1	7
141	Observation of stable cylindrical modes in electrically pumped circular grating-coupled surface-emitting lasers. Applied Optics, 2000, 39, 1946.	2.1	9
142	Semiconductor laser with curved deep-etched distributed Bragg reflectors supporting a planar Gaussian mode. Optics Letters, 2000, 25, 108.	1.7	5
143	Multifunctional grating couplers for bidirectional incoupling into planar waveguides. IEEE Photonics Technology Letters, 2000, 12, 314-316.	1.3	12
144	Single-mode power dependence on surface relief size for mode-stabilized oxide-confined vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters, 2000, 12, 1129-1131.	1,3	30

#	Article	IF	Citations
145	Waveguide input grating couplers for simultaneous coupling into the TE and TM mode. , 2000, , .		1
146	Diffractive solutions in integrated optics?. , 2000, , .		1
147	Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping. IEEE Photonics Technology Letters, 1999, 11, 503-505.	1.3	42
148	Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief. IEEE Photonics Technology Letters, 1999, 11, 1536-1538.	1.3	134
149	Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions. Applied Optics, 1999, 38, 5738.	2.1	18
150	InGaAs/AlGaAs distributed Bragg reflector lasers with curved surface gratings for monolithic integration. Electronics Letters, 1997, 33, 1464.	0.5	29
151	Miniature Hologram on Optical Waveguide. Optics and Photonics News, 1997, 8, 33.	0.4	2
152	Small-feature-size fan-out kinoform etched in GaAs. Applied Optics, 1996, 35, 801.	2.1	19
153	Continuous-level phase-only computer-generated hologram realized by dislocated binary gratings. Optics Letters, 1996, 21, 1516.	1.7	25
154	Off-plane computer-generated waveguide hologram. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2, 226-235.	1.9	38
155	Highly directional grating outcouplers with tailorable radiation characteristics. IEEE Journal of Quantum Electronics, 1996, 32, 1038-1047.	1.0	44
156	Investigation of high-efficiency surface-emitting lasers with blazed grating outcouplers. IEEE Journal of Quantum Electronics, 1996, 32, 1596-1605.	1.0	19
157	High efficiency surface emitting lasers using blazed grating outcouplers. Applied Physics Letters, 1995, 67, 3685-3687.	1.5	17
158	Dependence of output coupling efficiency on detuning in surface grating output couplers. Optics Letters, 1995, 20, 180.	1.7	11
159	Low-threshold grating-coupled surface-emitting lasers with etch-stop layer for precise grating positioning. IEEE Photonics Technology Letters, 1993, 5, 1149-1152.	1.3	25
160	Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at ~2.0 \hat{l}^{1} 4m. Electronics Letters, 1993, 29, 574.	0.5	37
161	InGaAs/InGaAsp/InP strained-layer quantum well lasers at ~2 ξm. Electronics Letters, 1992, 28, 1431.	0.5	78
162	Fabrication of ultrahigh quality vertical facets in GaAs using pattern corrected electron beam lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 2243.	1.6	9

#	Article	IF	Citations
163	Lateral modes of broad area semiconductor lasers: theory and experiment. IEEE Journal of Quantum Electronics, 1991, 27, 312-320.	1.0	69
164	Ultrafast IR detector response in high Tc superconducting thin films. Physica Scripta, 1991, 44, 105-107.	1.2	1
165	Optical absorption by free holes in heavily doped GaAs. Physical Review B, 1991, 44, 1128-1133.	1.1	40
166	Long-wavelength infrared spectroscopy of an asymmetrically structuredGa0.6Al0.4As/GaAs superlattice. Physical Review B, 1991, 43, 9320-9323.	1.1	3
167	Optically induced excitonic electroabsorption in a periodically δâ€doped InGaAs/GaAs multiple quantum well structure. Applied Physics Letters, 1991, 59, 1946-1948.	1.5	22
168	Optically addressed asymmetric Fabry–Perot modulator. Applied Physics Letters, 1991, 59, 3099-3101.	1.5	21
169	Pseudomorphic InyGa1â^'yAs/GaAs/AlxGa1â^'xAs single quantum well surfaceâ€emitting lasers with integrated 45° beam deflectors. Applied Physics Letters, 1991, 58, 7-9.	1.5	15
170	Highâ€power AlGaAs/GaAs single quantum well surfaceâ€emitting lasers with integrated 45° beam deflectors. Applied Physics Letters, 1990, 57, 2048-2050.	1.5	14
171	Strainedâ€layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency. Applied Physics Letters, 1989, 55, 2268-2270.	1.5	24
172	Modulation bandwidth of GaAs/AlGaAs single quantum well lasers operating at the second quantized state. Applied Physics Letters, 1989, 54, 884-886.	1.5	16
173	Tunable superlattice p-i-n photodetectors: characteristics, theory, and application. IEEE Journal of Quantum Electronics, 1988, 24, 787-801.	1.0	102
174	ActiveQswitching in a GaAs/AlGaAs multiquantum well laser with an intracavity monolithic loss modulator. Applied Physics Letters, 1986, 48, 561-563.	1.5	48
175	High-efficiency broad-area single-quantum-well lasers with narrow single-lobed far-field patterns prepared by molecular beam epitaxy. Electronics Letters, 1986, 22, 79.	0.5	48
176	Highâ€speed dualâ€wavelength demultiplexing and detection in a monolithic superlatticepâ€iâ€nwaveguide detector array. Applied Physics Letters, 1986, 49, 233-235.	1.5	31
177	Lateral coherence properties of broadâ€area semiconductor quantum well lasers. Journal of Applied Physics, 1986, 60, 66-68.	1.1	32
178	Second quantized state lasing of a current pumped single quantum well laser. Applied Physics Letters, 1986, 49, 1689-1691.	1.5	80
179	Spectral and temporal characteristics of AlGaAs/GaAs superlatticepâ€iâ€nphotodetectors. Applied Physics Letters, 1985, 47, 866-868.	1.5	30