
Woochul Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2831603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A prediction model for photopatternable thickness of photocurable polymer nanocomposites containing carbon-based high-aspect-ratio fillers. Composites Science and Technology, 2022, 218, 109207.	3.8	6
2	Prediction of mechanical properties of graphite nanoflake/polydimethylsiloxane nanocomposites as affected by processing method. Composites Part B: Engineering, 2021, 224, 109186.	5.9	10
3	Development of a rigid suspended micro-island device and robust measurement method for thermal transport measurements. Review of Scientific Instruments, 2020, 91, 124902.	0.6	0
4	Advanced Experimental Technique to Measure Thermal Conductivity Using Suspended Micro-Island Devices. ECS Meeting Abstracts, 2020, MA2020-02, 1995-1995.	0.0	0
5	Ion Write Microthermotics: Programing Thermal Metamaterials at the Microscale. Nano Letters, 2019, 19, 3830-3837.	4.5	45
6	Thermoelectrics of Nanowires. Chemical Reviews, 2019, 119, 9260-9302.	23.0	110
7	(Invited) Energy Transport at the Nanoscale. ECS Meeting Abstracts, 2019, , .	0.0	0
8	Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires. Nano Letters, 2018, 18, 3538-3542.	4.5	51
9	Phase-transition–induced p-n junction in single halide perovskite nanowire. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8889-8894.	3.3	48
10	Investigation of phonon coherence and backscattering using silicon nanomeshes. Nature Communications, 2017, 8, 14054.	5.8	123
11	Ultralow thermal conductivity in all-inorganic halide perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8693-8697.	3.3	246
12	Thermal Transport in Silicon Nanowires at High Temperature up to 700 K. Nano Letters, 2016, 16, 4133-4140.	4.5	74
13	Radiative heat transfer in the extreme near field. Nature, 2015, 528, 387-391.	13.7	332
14	Quantification of thermal and contact resistances of scanning thermal probes. Applied Physics Letters, 2014, 105, .	1.5	17
15	Heat dissipation and its relation to thermopower in single-molecule junctions. New Journal of Physics, 2014, 16, 015004.	1.2	88
16	Electrostatic control of thermoelectricity in molecular junctions. Nature Nanotechnology, 2014, 9, 881-885.	15.6	204
17	Characterization of nanoscale temperature fields during electromigration of nanowires. Scientific Reports, 2014, 4, .	1.6	45
18	Heat dissipation in atomic-scale junctions. Nature, 2013, 498, 209-212.	13.7	219

WOOCHUL LEE

#	Article	IF	CITATIONS
19	MEASUREMENT OF THERMOELECTRIC AND THERMAL TRANSPORT PROPERTIES OF SINGLE-MOLECULE JUNCTIONS. Annual Review of Heat Transfer, 2013, 16, 259-286.	0.3	5
20	Ultra-High Vacuum Scanning Thermal Microscopy for Nanometer Resolution Quantitative Thermometry. ACS Nano, 2012, 6, 4248-4257.	7.3	159
21	Creation of stable molecular junctions with a custom-designed scanning tunneling microscope. Nanotechnology, 2011, 22, 485703.	1.3	25
22	Room temperature picowatt-resolution calorimetry. Applied Physics Letters, 2011, 99, 043106.	1.5	42