Masahiro Yanagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2831448/publications.pdf Version: 2024-02-01

ΜΑΣΑΗΙΡΟ ΥΑΝΑζΑλΜΑ

#	Article	IF	CITATIONS
1	Imaging Patterns Are Associated with Interstitial Lung Abnormality Progression and Mortality. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 175-183.	5.6	142
2	Effect of Matrix Size on the Image Quality of Ultra-high-resolution CT of the Lung. Academic Radiology, 2018, 25, 869-876.	2.5	108
3	Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner. PLoS ONE, 2015, 10, e0137165.	2.5	92
4	Evaluation of Response to Neoadjuvant Chemotherapy for Esophageal Cancer: PET Response Criteria in Solid Tumors Versus Response Evaluation Criteria in Solid Tumors. Journal of Nuclear Medicine, 2012, 53, 872-880.	5.0	89
5	Acute eosinophilic pneumonia: Thin-section CT findings in 29 patients. European Journal of Radiology, 2008, 65, 462-467.	2.6	84
6	Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs. European Radiology, 2018, 28, 5060-5068.	4.5	78
7	Adaptive Statistical Iterative Reconstruction Technique for Pulmonary CT. Academic Radiology, 2010, 17, 1259-1266.	2.5	59
8	Pathologically Proved Nonspecific Interstitial Pneumonia: CT Pattern Analysis as Compared with Usual Interstitial Pneumonia CT Pattern. Radiology, 2014, 272, 549-556.	7.3	57
9	The <i>MUC5B</i> promoter polymorphism is associated with specific interstitial lung abnormality subtypes. European Respiratory Journal, 2017, 50, 1700537.	6.7	55
10	Doubling time of lung cancer determined using three-dimensional volumetric software: Comparison of squamous cell carcinoma and adenocarcinoma. Lung Cancer, 2009, 66, 211-217.	2.0	53
11	Automated assessment of malignant degree of small peripheral adenocarcinomas using volumetric CT data: Correlation with pathologic prognostic factors. Lung Cancer, 2010, 70, 286-294.	2.0	49
12	Intratumoral heterogeneity of F-18 FDG uptake differentiates between gastrointestinal stromal tumors and abdominal malignant lymphomas on PET/CT. Annals of Nuclear Medicine, 2012, 26, 222-227.	2.2	48
13	Prognostic Importance of Volumetric Measurements in Stage I Lung Adenocarcinoma. Radiology, 2014, 272, 557-567.	7.3	46
14	Radiologic–Pathologic Correlation of Solid Portions on Thin-section CT Images in Lung Adenocarcinoma: A Multicenter Study. Clinical Lung Cancer, 2018, 19, e303-e312.	2.6	43
15	Ultra-low-dose CT of the Lung. Academic Radiology, 2014, 21, 695-703.	2.5	42
16	Commercially Available Computer-Aided Detection System for Pulmonary Nodules on Thin-Section Images Using 64 Detectors-Row CT. Academic Radiology, 2009, 16, 924-933.	2.5	38
17	Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Medical Physics, 2015, 42, 2054-2063.	3.0	38
18	Traction Bronchiectasis/Bronchiolectasis is Associated with Interstitial Lung Abnormality Mortality. European Journal of Radiology, 2020, 129, 109073.	2.6	38

MASAHIRO YANAGAWA

#	Article	IF	CITATIONS
19	Pulmonary nodules: Effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system—Comparison of performance between different-dose CT scans. European Journal of Radiology, 2012, 81, 2877-2886.	2.6	36
20	Imaging characteristics of papillary renal cell carcinoma by computed tomography scan and magnetic resonance imaging. International Journal of Urology, 2005, 12, 795-800.	1.0	35
21	Pulmonary Nodules: 3D Volumetric Measurement with Multidetector CT—Effect of Intravenous Contrast Medium. Radiology, 2007, 245, 881-887.	7.3	33
22	Radiological prediction of tumor invasiveness of lung adenocarcinoma on thin-section CT. Medicine (United States), 2017, 96, e6331.	1.0	33
23	Prediction of Thymoma Histology and Stage by Radiographic Criteria. Thoracic Surgery Clinics, 2011, 21, 1-12.	1.0	32
24	Lung Adenocarcinoma at CT with 0.25-mm Section Thickness and a 2048 Matrix: High-Spatial-Resolution Imaging for Predicting Invasiveness. Radiology, 2020, 297, 462-471.	7.3	32
25	Diameter of Solid Tumor Component Alone Should be Used to Establish T Stage in Lung Adenocarcinoma. Annals of Surgical Oncology, 2015, 22, 1318-1323.	1.5	30
26	Deep learning algorithm for detection of aortic dissection on non-contrast-enhanced CT. European Radiology, 2021, 31, 1151-1159.	4.5	29
27	Combination of Deep Learning–Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation. American Journal of Roentgenology, 2020, 215, 1321-1328.	2.2	28
28	Multidetector CT of the Lung: Image Quality with Garnet-based Detectors. Radiology, 2010, 255, 944-954.	7.3	26
29	One-dimensional quantitative evaluation of peripheral lung adenocarcinoma with or without ground-glass opacity on thin-section CT images using profile curves. British Journal of Radiology, 2009, 82, 532-540.	2.2	23
30	Dynamic Chest X-Ray Using a Flat-Panel Detector System: Technique and Applications. Korean Journal of Radiology, 2021, 22, 634.	3.4	22
31	Application of deep learning (3-dimensional convolutional neural network) for the prediction of pathological invasiveness in lung adenocarcinoma. Medicine (United States), 2019, 98, e16119.	1.0	21
32	Nonspecific Interstitial Pneumonia Associated with Collagen Vascular Disease: Analysis of CT Features to Distinguish the Various Types. Internal Medicine, 2009, 48, 753-761.	0.7	20
33	Nonspecific interstitial pneumonia: Histologic correlation with high-resolution CT in 29 patients. European Journal of Radiology, 2009, 70, 35-40.	2.6	19
34	Computed Tomography Values Calculation and Volume Histogram Analysis for Various Computed Tomographic Patterns of Diffuse Lung Diseases. Journal of Computer Assisted Tomography, 2009, 33, 731-738.	0.9	19
35	Dual-energy dynamic CT of lung adenocarcinoma: correlation of iodine uptake with tumor gene expression. European Journal of Radiology, 2016, 85, 1407-1413.	2.6	18
36	Influence of field of view size on image quality: ultra-high-resolution CT vs. conventional high-resolution CT. European Radiology, 2020, 30, 3324-3333.	4.5	16

MASAHIRO YANAGAWA

#	Article	IF	CITATIONS
37	Progression of traction bronchiectasis/bronchiolectasis in interstitial lung abnormalities is associated with increased all-cause mortality: Age Gene/Environment Susceptibility-Reykjavik Study. European Journal of Radiology Open, 2021, 8, 100334.	1.6	15
38	Classification of idiopathic interstitial pneumonias using anti–myxovirus resistance-protein 1 autoantibody. Scientific Reports, 2017, 7, 43201.	3.3	14
39	Influence of gantry rotation time and scan mode on image quality in ultra-high-resolution CT system. European Journal of Radiology, 2018, 103, 71-75.	2.6	14
40	Prediction of pathological complete response after neoadjuvant chemotherapy in breast cancer: comparison of diagnostic performances of dedicated breast PET, whole-body PET, and dynamic contrast-enhanced MRI. Breast Cancer Research and Treatment, 2021, 188, 107-115.	2.5	13
41	Traction Bronchiectasis/Bronchiolectasis on CT Scans in Relationship to Clinical Outcomes and Mortality: The COPDGene Study. Radiology, 2022, 304, 694-701.	7.3	13
42	Submillisievert CT using model-based iterative reconstruction with lung-specific setting: An initial phantom study. European Radiology, 2016, 26, 4457-4464.	4.5	12
43	Volume of pulmonary lobes and segments in chronic obstructive pulmonary diseases calculated using newly developed three-dimensional software. Japanese Journal of Radiology, 2009, 27, 115-122.	2.4	11
44	Thin-section CT of lung without ECG gating: 64-detector row CT can markedly reduce cardiac motion artifact which can simulate lung lesions. European Journal of Radiology, 2009, 69, 102-107.	2.6	11
45	Usual interstitial pneumonia and nonspecific interstitial pneumonia: Correlation between CT findings at the site of biopsy with pathological diagnoses. European Journal of Radiology, 2012, 81, 2919-2924.	2.6	11
46	Pleural abnormalities in the Framingham Heart Study: prevalence and CT image features. Occupational and Environmental Medicine, 2017, 74, 756-761.	2.8	11
47	Ultra-low-dose chest computed tomography for interstitial lung disease using model-based iterative reconstruction with or without the lung setting. Medicine (United States), 2019, 98, e15936.	1.0	11
48	Ultra high-resolution computed tomography with 1024-matrix: Comparison with 512-matrix for the evaluation of pulmonary nodules. European Journal of Radiology, 2020, 128, 109033.	2.6	11
49	Volumetric analysis of the thymic epithelial tumors: correlation of tumor volume with the WHO classification and Masaoka staging. Journal of Thoracic Disease, 2018, 10, 5822-5832.	1.4	10
50	Diagnostic performance for pulmonary adenocarcinoma on CT: comparison of radiologists with and without three-dimensional convolutional neural network. European Radiology, 2021, 31, 1978-1986.	4.5	10
51	Radiogenomics of magnetic resonance imaging and a new multi-gene classifier for predicting recurrence prognosis in estrogen receptor-positive breast cancer. Medicine (United States), 2020, 99, e19664.	1.0	9
52	Detection of pulmonary nodules by C-arm CT using a phantom lung: comparison with CT. Acta Radiologica, 2011, 52, 964-968.	1.1	8
53	Interstitial lung abnormalities are associated with decreased mean telomere length. European Respiratory Journal, 2022, 60, 2101814.	6.7	8
54	Radiologists with and without deep learning–based computer-aided diagnosis: comparison of performance and interobserver agreement for characterizing and diagnosing pulmonary nodules/masses. European Radiology, 2023, 33, 348-359.	4.5	8

MASAHIRO YANAGAWA

#	Article	IF	CITATIONS
55	The Effect of the Virtual Monochromatic Spectral Imaging for the Metallic Artifact and the Pulmonary Nodule Detection. Journal of Computer Assisted Tomography, 2013, 37, 707-711.	0.9	7
56	Quantitative pulmonary blood flow measurement using 15O-H2O PET with and without tissue fraction correction: a comparison study. EJNMMI Research, 2017, 7, 102.	2.5	6
57	Pulmonary Emphysema Quantification on Ultra–Low-Dose Computed Tomography Using Model-Based Iterative Reconstruction With or Without Lung Setting. Journal of Computer Assisted Tomography, 2018, 42, 760-766.	0.9	5
58	Quantitative volumetry of ground-glass nodules on high-spatial-resolution CT with 0.25-mm section thickness and 1024 matrix: Phantom and clinical studies. European Journal of Radiology Open, 2021, 8, 100362.	1.6	5
59	Heterologous carcinosarcoma of Douglas' pouch with adenocarcinomas of the fallopian tube and the peritoneal cavity. Pathology, 2008, 40, 641-645.	0.6	4
60	CT-guided Percutaneous Cutting Needle Biopsy of Thymic Epithelial Tumors. Academic Radiology, 2010, 17, 772-778.	2.5	4
61	Paradoxical signal pattern of mediastinal cysts on T2-weighted MR imaging: phantom and clinical study. European Journal of Radiology, 2014, 83, 1016-1021.	2.6	4
62	Solitary pulmonary metastases from renal cell carcinoma: comparison of high-resolution CT with pathological findings. Radiation Medicine, 2006, 24, 680-686.	0.8	3
63	The effect of the reconstruction algorithm for the pulmonary nodule detection under the metal artifact caused by a pacemaker. Medicine (United States), 2020, 99, e20579.	1.0	3
64	CT Diagnosis of Lung Adenocarcinoma: Radiologic-Pathologic Correlation and Growth Rate. Radiology, 2020, 297, 199-200.	7.3	3
65	A case of zonisamide-induced toxic epidermal necrolysis with acute respiratory failure. Allergology International, 2020, 69, 642-644.	3.3	3
66	Greater reductions in blood flow after anti-angiogenic treatment in non-small cell lung cancer patients are associated with shorter progression-free survival. Scientific Reports, 2021, 11, 6805.	3.3	3
67	Detectability of pulmonary ossifications in fibrotic lung on ultra-high-resolution CT using 2048 matrix size and 0.25-mm slice thickness. Scientific Reports, 2021, 11, 15119.	3.3	2
68	Spindle Cell Carcinoma of the Breast. Journal of Computer Assisted Tomography, 2021, Publish Ahead of Print, 11-16.	0.9	2
69	Prognostic impact of tumor volume in patients with complete resection of thymoma. Thoracic Cancer, 2022, 13, 1021-1026.	1.9	2
70	Spontaneous Regression of Type B3 Thymoma With Mesothelial Cyst. Journal of Thoracic Imaging, 2020, Publish Ahead of Print, W123-W126.	1.5	1
71	Quantitative Computed Tomography Imaging of Lung Cancer. Japanese Journal of Lung Cancer, 2019, 59, 29-36.	0.1	0
72	Artificial Intelligence Improves Radiologist Performance for Predicting Malignancy at Chest CT. Radiology, 0, , .	7.3	0

#	Article	IF	CITATIONS
73	Visualization of the Associations between the CT Features Extracted from a Deep Learning Survival Prediction Model and Histopathologic Risk Factors. Radiology, 0, , .	7.3	Ο