Long Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/283134/publications.pdf

Version: 2024-02-01

		145106]	156644
135	4,170	33		58
papers	citations	h-index		g-index
140	140	140		7889
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Moisture-stimulated reversible thermochromic CsPbI3-xBrx films: In-situ spectroscopic-resolved structure and optical properties. Applied Surface Science, 2022, 573, 151484.	3.1	6
2	Antisense Oligonucleotide In Vitro Protein Binding Determination in Plasma, Brain, and Cerebral Spinal Fluid Using Hybridization LC-MS/MS. Drug Metabolism and Disposition, 2022, 50, 268-276.	1.7	7
3	Validation and application of hybridization liquid chromatography-tandem mass spectrometry methods for quantitative bioanalysis of antisense oligonucleotides. Bioanalysis, 2022, 14, 589-601.	0.6	11
4	Revealing charge carrier dynamics and transport in Te-doped GaAsSb and GaAsSbN nanowires by correlating ultrafast terahertz spectroscopy and optoelectronic characterization. Nanotechnology, 2022, 33, 425702.	1.3	3
5	Effect of Ca dopant on magnetic and magnetodielectric properties of Y3Fe5O12. Journal of Alloys and Compounds, 2021, 861, 157996.	2.8	10
6	Tensile and biodegradable properties of Mg-6.0Zn-1.0Nd-0.5Zr alloy. Inorganic Chemistry Communication, 2021, 123, 108337.	1.8	1
7	Manipulation of Exciton Dynamics and Annihilation in Single-Layer WSe2 using a Toroidal Dielectric Metasurface., 2021,,.		O
8	Open-air solvothermal synthesis and photoresponse of plate-shaped Cu3ZnInSnSe6 nanocrystals. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	1
9	A bridging immunogenicity assay for anti-cabiralizumab antibodies: overcoming the low assay cut point and drug tolerance challenges. Bioanalysis, 2021, 13, 395-407.	0.6	2
10	D-Shaped Photonic Crystal Fiber Plasmonic Sensor Based on Silver-Titanium Dioxide Composite Micro-grating. Plasmonics, 2021, 16, 2049-2059.	1.8	30
11	Realization of interstitial boron ordering and optimal near-surface electronic structure in Pd-B alloy electrocatalysts. Chemical Engineering Journal, 2021, 419, 129568.	6.6	23
12	In-Situ thermochromic mechanism of Spin-Coated VO2 film. Applied Surface Science, 2021, 564, 150441.	3.1	8
13	Pourbaix-Guided Mineralization and Site-Selective Photoluminescence Properties of Rare Earth Substituted B-Type Carbonated Hydroxyapatite Nanocrystals. Molecules, 2021, 26, 540.	1.7	1
14	Manipulation of Exciton Dynamics in Single-Layer WSe ₂ Using a Toroidal Dielectric Metasurface. Nano Letters, 2021, 21, 9930-9938.	4.5	14
15	Application of in-sample calibration curve methodology for regulated bioanalysis: Critical considerations in method development, validation and sample analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020, 177, 112844.	1.4	9
16	Water-assisted synthesis of shape-specific BiOCl nanoflowers with enhanced adsorption and photosensitized degradation of rhodamine B. Environmental Chemistry Letters, 2020, 18, 243-249.	8.3	23
17	Size tunable Ga–Ge nanowires for Li-ion battery prepared by in situ alloying in ionic liquid electrodeposition. Applied Surface Science, 2020, 508, 144852.	3.1	12
18	Oxygen vacancies enhancing acetone-sensing performance. Materials Today Chemistry, 2020, 18, 100372.	1.7	7

#	Article	IF	Citations
19	Design of Pt/SAPO-11 bifunctional catalyst with superior metal–acid balance constructed <i>via</i> a novel one-step pre-loading strategy for enhancing <i>n</i> performance. Catalysis Science and Technology, 2020, 10, 5953-5963.	2.1	14
20	Hydrothermal growth of facet-tunable fluoride perovskite crystals KMF3 (M = Mg, Mn, Co, Ni and Zn). CrystEngComm, 2020, 22, 6216-6227.	1.3	8
21	Jahn–Teller Disproportionation Induced Exfoliation of Unitâ€Cell Scale Ïμâ€MnO ₂ . Angewandte Chemie - International Edition, 2020, 59, 22659-22666.	7.2	26
22	Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nature Materials, 2020, 19, 617-623.	13.3	193
23	Reversible thermochromic property of Cr, Mn, Fe, Co-doped Ca ₁₄ Zn ₆ Ga ₁₀ O ₃₅ . Journal of Materials Chemistry C, 2020, 8, 9615-9624.	2.7	11
24	Fit-for-purpose protein biomarker assay validation strategies using hybrid immunocapture-liquid chromatography-tandem-mass spectrometry platform: Quantitative analysis of total soluble cluster of differentiation 73. Analytica Chimica Acta, 2020, 1126, 144-153.	2.6	7
25	Shape Controllable Synthesis of Bi-Based Perovskite Superconductor Microcrystals via a Mild Hydrothermal Method. Crystal Growth and Design, 2020, 20, 2123-2128.	1.4	8
26	In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI ₃ Phase Evolution Portfolio. Journal of Physical Chemistry C, 2020, 124, 8008-8014.	1.5	11
27	<i>In situ</i> exsolution of Ag from AgBiS ₂ nanocrystal anode boosting high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 15058-15065.	5.2	16
28	Activity adaptability of a DhHP-6 peroxidase-mimic in wide pH and temperature ranges and solvent media. Catalysis Science and Technology, 2020, 10, 1848-1857.	2.1	5
29	Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nature Communications, 2020, 11 , 664 .	5.8	167
30	Research on photonic crystal fiber based on a surface plasmon resonance sensor with segmented silver-titanium dioxide film. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 736.	0.9	39
31	Challenges and recommendations in developing LC–MS/MS bioanalytical assays of labile glucuronides and parent compounds in the presence of glucuronide metabolites. Bioanalysis, 2020, 12, 615-624.	0.6	7
32	Fabrication and In vitro Bioactivity of Robust Hydroxyapatite Coating on Porous Titanium Implant. Chemical Research in Chinese Universities, 2019, 35, 686-692.	1.3	6
33	Optimization of oxygen evolution dynamics on RuO ₂ <i>via</i> controlling of spontaneous dissociation equilibrium. Materials Chemistry Frontiers, 2019, 3, 1779-1785.	3.2	7
34	Improved Doping and Emission Efficiencies of Mn-Doped CsPbCl ₃ Perovskite Nanocrystals via Nickel Chloride. Journal of Physical Chemistry Letters, 2019, 10, 4177-4184.	2.1	79
35	<i>ln situ</i> Ga-alloying in germanium nano-twists by the inhibition of fractal growth with fast Li ⁺ -mobility. Chemical Communications, 2019, 55, 10412-10415.	2.2	4
36	Graphene Oxide Induced High Crystallinity of SAPOâ€11 Molecular Sieves for Improved Alkane Isomerization Performance. ChemNanoMat, 2019, 5, 1225-1232.	1.5	14

#	Article	lF	CITATIONS
37	Soft-Chemical Method for Synthesizing Intermetallic Antimonide Nanocrystals from Ternary Chalcogenide. Langmuir, 2019, 35, 15131-15136.	1.6	6
38	Mild Hydrothermal Crystallization of Heavy Rare-Earth Chromite RECrO ₃ (RE = Er, Tm, Yb,) Tj ETQq0	O O orgBT	/Oyerlock 10
39	Extrinsic and Dynamic Edge States of Two-Dimensional Lead Halide Perovskites. ACS Nano, 2019, 13, 1635-1644.	7.3	79
40	Tuning the interfacial and energetic interactions between a photoexcited conjugated polymer and open-shell small molecules. Soft Matter, 2019, 15, 1413-1422.	1.2	3
41	Ultrafast Dynamic Microscopy of Carrier and Exciton Transport. Annual Review of Physical Chemistry, 2019, 70, 219-244.	4.8	75
42	Hydrothermal Synthesized Co-Ni3S2 Ultrathin Nanosheets for Efficient and Enhanced Overall Water Splitting. Chemical Research in Chinese Universities, 2019, 35, 179-185.	1.3	11
43	High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Journal of Alloys and Compounds, 2019, 782, 384-391.	2.8	27
44	A convenient strategy to overcome interference in LC-MS/MS analysis: Application in a microdose absolute bioavailability study. Journal of Pharmaceutical and Biomedical Analysis, 2019, 165, 198-206.	1.4	9
45	Design Principles for 3d Electron Transfer in a Ga-Based Garnet To Enable High-Performance Reversible Thermochromic Material Color Maps. Chemistry of Materials, 2019, 31, 1048-1056.	3.2	15
46	B-site ordering, magnetic and dielectric properties of hydrothermally synthesized Lu2NiMnO6. Journal of Alloys and Compounds, 2018, 744, 395-403.	2.8	8
47	Hydrothermal Growth of Centimeter-Scale CuO Plates: Planar Chromium(III) Oligomer as a Facet-Directing Agent. Inorganic Chemistry, 2018, 57, 2957-2960.	1.9	0
48	Discovery, identification and mitigation of isobaric sulfate metabolite interference to a phosphate prodrug in LC–MS/MS bioanalysis: Critical role of method development in ensuring assay quality. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155, 141-147.	1.4	7
49	Tuneable colour-emitting Ce3+, Eu3+/K+ and Ce3+/Tb3+ doped BaSiF6 phosphors via charge compensation and energy transfer. Journal of Luminescence, 2018, 198, 203-207.	1.5	4
50	Thermal stable blue pigment with tunable color of Dyln1-xMnxO3 (0â‰x≠0.1). Dyes and Pigments, 2018, 156, 192-198.	2.0	4
51	Solventâ€Free Synthesis and <i>n</i> â€Hexadecane Hydroisomerization Performance of SAPOâ€11 Catalyst. European Journal of Inorganic Chemistry, 2018, 2018, 2599-2606.	1.0	26
52	Photocarrier generation from interlayer charge-transfer transitions in WS ₂ -graphene heterostructures. Science Advances, 2018, 4, e1700324.	4.7	160
53	Hydrothermal shape controllable synthesis of La _{0.5} Sr _{0.5} MnO ₃ crystals and facet effect on electron transfer of oxygen reduction. Inorganic Chemistry Frontiers, 2018, 5, 732-738.	3.0	12
54	Design and synthesis of metal hydroxide three-dimensional inorganic cationic frameworks. Dalton Transactions, 2018, 47, 3339-3345.	1.6	1

#	Article	IF	CITATIONS
55	Highly mobile charge-transfer excitons in two-dimensional WS ₂ /tetracene heterostructures. Science Advances, 2018, 4, eaao3104.	4.7	132
56	Mineralizer effect on facet-controllable hydrothermal crystallization of perovskite structure YbFeO ₃ crystals. CrystEngComm, 2018, 20, 470-476.	1.3	19
57	Fabrication of ultralong perovskite structure nanotubes. RSC Advances, 2018, 8, 367-373.	1.7	4
58	Continuous Meltâ€Drawing of Highly Aligned Flexible and Stretchable Semiconducting Microfibers for Organic Electronics. Advanced Functional Materials, 2018, 28, 1705584.	7.8	39
59	Hydrothermal synthesis and magnetic properties of SmCr0.5M0.5O3(M=Fe and Mn) micro-plates. Chemical Research in Chinese Universities, 2018, 34, 1-7.	1.3	7
60	Shape Control of Ternary Sulfide Nanocrystals. Crystal Growth and Design, 2018, 18, 864-871.	1.4	11
61	Architecture of Biomimetic Water Oxidation Catalyst with Mn ₄ CaO ₅ Clusterlike Structure Unit. ACS Applied Materials & Interfaces, 2018, 10, 37948-37954.	4.0	14
62	Snâ€"Ni ₃ S ₂ Ultrathin Nanosheets as Efficient Bifunctional Water-Splitting Catalysts with a Large Current Density and Low Overpotential. ACS Applied Materials & Low Composition (2018, 10, 40568-40576.	4.0	113
63	Ultrafast Imaging of Carrier Transport across Grain Boundaries in Hybrid Perovskite Thin Films. ACS Energy Letters, 2018, 3, 1402-1408.	8.8	55
64	Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation. Journal of Physical Chemistry Letters, 2018, 9, 4146-4154.	2.1	67
65	Phaseâ€Controlled Synthesis of Highâ€Biâ€Ratio Ternary Sulfide Nanocrystals of Cu _{1.57} Bi _{4.57} S ₈ and Cu _{2.93} Bi _{4.89} S ₉ . ChemPlusChem, 2018, 83, 812-818.	1.3	9
66	Molten Salt Flux Synthesis, Crystal Facet Design, Characterization, Electronic Structure, and Catalytic Properties of Perovskite Cobaltite. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28219-28231.	4.0	46
67	Morphology, Structure Evolution and Siteâ€Selective Occupancy of Eu 3+ in Ca 10 (PO 4) 6 (OH) 2 Nanorods Synthesized via Subcritical Hydrothermal Method. ChemistrySelect, 2018, 3, 7749-7756.	0.7	5
68	Cation Segregation of A-Site Deficiency Perovskite La _{0.85} FeO _{3â^î^(} Nanoparticles toward High-Performance Cathode Catalysts for Rechargeable Li-O ₂ Battery. ACS Applied Materials & Deficiency (2018), 10, 25465-25472.	4.0	31
69	Low-temperature hydrothermal fabrication of Fe3O4 nanostructured solar selective absorption films. Applied Surface Science, 2018, 458, 629-637.	3.1	21
70	Overcoming the stability, solubility and extraction challenges in reversed-phase UHPLC–MS/MS bioanalysis of a phosphate drug and its prodrug in blood lysate. Journal of Pharmaceutical and Biomedical Analysis, 2018, 157, 36-43.	1.4	4
71	Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr _{$1\hat{a}^*x$} Mn _x O ₃ (<i>x</i> = 0.1, 0.2, and 0.3). CrystEngComm, 2018, 20, 3034-3042.	1.3	16
72	Nanoscale Architecture of RuO ₂ La _{0.9} sub>Fe _{0.92} Ru _{0.08â€"<i>x</i>} composite via Manipulating the Exsolution of Low Ru-Substituted A-Site Deficient Perovskite. ACS Sustainable Chemistry and Engineering, 2018, 6, 11999-12005.	3.2	39

#	Article	IF	CITATIONS
73	Insight into the enhanced photoelectrocatalytic activity in reduced LaFeO ₃ films. Chemical Communications, 2017, 53, 2499-2502.	2.2	20
74	Molecular beam epitaxial growth of oriented and uniform Ge2Sb2Te5 nanoparticles with compact dimensions. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	3
75	In-situ optical and structural insight of reversible thermochromic materials of Sm3-xBixFe5O12 (x= 0,) Tj ETQq1 1	0,784314 2.0	rgBT /Overlo
76	Composition dependent magnetic and ferroelectric properties of hydrothermally synthesized GdFe _{1â^x} Cr _x O ₃ (0.1 ≠x ≠0.9) perovskites. Dalton Transactions, 2017, 46, 5930-5937.	1.6	27
77	Electric-field-induced assembly of Ag nanoparticles on a CuO nanowire using ambient electrospray ionization. New Journal of Chemistry, 2017, 41, 2878-2882.	1.4	8
78	Shape tuneable synthesis of perovskite structured rare-earth chromites RECrO ₃ via a mild hydrothermal method. CrystEngComm, 2017, 19, 6436-6442.	1.3	15
79	Size-dependent optical and thermochromic properties of Sm ₃ Fe ₅ O ₁₂ . RSC Advances, 2017, 7, 37765-37770.	1.7	17
80	Nd3â^'xAExFe5O12: Hydrothermal synthesis, structure and magnetic properties. Chemical Research in Chinese Universities, 2017, 33, 869-875.	1.3	5
81	Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors. Journal of Physical Chemistry Letters, 2017, 8, 3371-3379.	2.1	169
82	Ultra-low reflection CuO nanowire array in-situ grown on copper sheet. Materials and Design, 2017, 113, 297-304.	3.3	21
83	Investigation of the "true―extraction recovery of analytes from multiple types of tissues and its impact on tissue bioanalysis using two model compounds. Analytica Chimica Acta, 2016, 945, 57-66.	2.6	9
84	Crystal Shape Tailoring in Perovskite Structure Rare-Earth Ferrites REFeO ₃ (RE = La, Pr, Sm,) Tj ETQqQ Design, 2016, 16, 6522-6530.	0 0 0 rgBT 1.4	Overlock 10 46
85	Hydrothermal preparation of perovskite structures DyCrO ₃ and HoCrO ₃ . Dalton Transactions, 2016, 45, 17593-17597.	1.6	22
86	Beneficial and Adverse Effects of an LXR Agonist on Human Lipid and Lipoprotein Metabolism and Circulating Neutrophils. Cell Metabolism, 2016, 24, 223-233.	7.2	109
87	A simple, effective approach for rapid development of high-throughput and reliable LC–MS/MS bioanalytical assays. Bioanalysis, 2016, 8, 1809-1822.	0.6	13
88	Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. ACS Nano, 2016, 10, 11136-11144.	7.3	69
89	The direct synthesis of Au nanocrystals in microdroplets using the spray-assisted method. New Journal of Chemistry, 2016, 40, 7294-7298.	1.4	8
90	Improved energy conversion efficiency of ZnO/polythiophene solar cell in Ga-doped ZnO nanorod array photoanode. Chemical Research in Chinese Universities, 2016, 32, 979-984.	1.3	0

#	Article	IF	CITATIONS
91	Î-MnO ₂ â€"Mn ₃ O ₄ Nanocomposite for Photochemical Water Oxidation: Active Structure Stabilized in the Interface. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27825-27831.	4.0	60
92	Structure, optical spectroscopy properties and thermochromism of Sm ₃ Fe ₅ O ₁₂ garnets. Journal of Materials Chemistry C, 2016, 4, 10529-10537.	2.7	32
93	Surface reconstruction: An effective method for the growth of mismatched materials. Applied Surface Science, 2016, 360, 547-552.	3.1	5
94	Infrared Absorption Enhancement by Charge Transfer in Ga-GaSb Metal-Semiconductor Nanohybrids. Langmuir, 2016, 32, 4189-4193.	1.6	2
95	Solar selective absorbers with foamed nanostructure prepared by hydrothermal method on stainless steel. Solar Energy Materials and Solar Cells, 2016, 146, 99-106.	3.0	36
96	UV–vis absorption shift of mixed valance state tungstate oxide: Ca0.72La0.28WO4. Materials Letters, 2015, 143, 212-214.	1.3	9
97	Green catalyst: magnetic La _{0.7} Sr _{0.3} MnO ₃ hollow microspheres. New Journal of Chemistry, 2015, 39, 2413-2416.	1.4	14
98	Luminescence Enhancement of Lu ₃ TaO ₇ Redâ€Emitting Nanophosphors. European Journal of Inorganic Chemistry, 2015, 2015, 690-695.	1.0	6
99	Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction. Nanoscale, 2015, 7, 3130-3136.	2.8	133
100	Hydrothermal synthesis and magnetic behaviour of beta-Li3VF6 and Na3VF6. New Journal of Chemistry, 2015, 39, 5080-5083.	1.4	12
101	"Center punch―and "whole spot―bioanalysis of apixaban in human dried blood spot samples by UHPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 988, 66-74.	1.2	38
102	A UHPLC–MS/MS bioanalytical assay for the determination of BMS-911543, a JAK2 inhibitor, in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 991, 85-91.	1.2	7
103	Exciton dynamics and annihilation in WS ₂ 2D semiconductors. Nanoscale, 2015, 7, 7402-7408.	2.8	388
104	Photoluminescence properties of BaSiF ₆ :Eu ³⁺ ,Eu ³⁺ /K ⁺ and Eu ³⁺ /Tb ³⁺ 3+6. Do not be supper to the contraction of the	1.4	10
105	Crystal facet tailoring arts in perovskite oxides. Inorganic Chemistry Frontiers, 2015, 2, 965-981.	3.0	78
106	Dried blood spot analysis without dilution: Application to the LC–MS/MS determination of BMS-986001 in rat dried blood spot. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1002, 201-209.	1.2	3
107	Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO ₃ (RE = La, Pr, Nd, Sm). Dalton Transactions, 2015, 44, 17201-17208.	1.6	42
108	From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials. Inorganic Chemistry Frontiers, 2015, 2, 198-212.	3.0	48

#	Article	IF	CITATIONS
109	Feasibility assessment of a novel selective peptide derivatization strategy for sensitivity enhancement for the liquid chromatography/tandem mass spectrometry bioanalysis of protein therapeutics in serum. Rapid Communications in Mass Spectrometry, 2014, 28, 705-712.	0.7	9
110	The effect of NH ₄ ⁺ on shape modulation of La _{1â^'x} Sr _x MnO ₃ crystals in a hydrothermal environment. CrystEngComm, 2014, 16, 9842-9846.	1.3	16
111	A validated LC–MS/MS method for the simultaneous determination of BMS-791325, a hepatitis C virus NS5B RNA polymerase inhibitor, and its metabolite in plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 973, 1-8.	1.2	19
112	Electrochromic response of pulsed laser deposition prepared WO ₃ â€"TiO ₂ composite film. RSC Advances, 2014, 4, 47670-47676.	1.7	22
113	Engineering the surface of perovskite La _{0.5} Sr _{0.5} MnO ₃ for catalytic activity of CO oxidation. Chemical Communications, 2014, 50, 9200-9203.	2.2	84
114	Crystal facet control of LaFeO3, LaCrO3, and LaO.75SrO.25MnO3. CrystEngComm, 2014, 16, 2874.	1.3	25
115	Hydrothermal synthesis and magnetic properties of REFe0.5Cr0.5O3 (RE = La, Tb, Ho, Er, Yb, Lu and Y) perovskite. New Journal of Chemistry, 2014, 38, 1168.	1.4	39
116	Use of a carboxylesterase inhibitor of phenylmethanesulfonyl fluoride to stabilize epothilone D in rat plasma for a validated UHPLC–MS/MS assay. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 969, 60-68.	1.2	11
117	Hydrothermal syntheses and photoluminescence properties of rare-earth tungstate as near ultraviolet type red phosphors. New Journal of Chemistry, 2014, 38, 1441.	1.4	25
118	Catalytic behavior of electrospinning synthesized La0.75Sr0.25MnO3 nanofibers in the oxidation of CO and CH4. Chemical Engineering Journal, 2014, 244, 27-32.	6.6	42
119	Application of a stabilizer cocktail of N-ethylmaleimide and phenylmethanesulfonyl fluoride to concurrently stabilize the disulfide and ester containing compounds in a plasma LC–MS/MS assay. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 552-561.	1.4	22
120	Improved ruggedness of an ionâ€pairing liquid chromatography/tandem mass spectrometry assay for the quantitative analysis of the triphosphate metabolite of a nucleoside reverse transcriptase inhibitor in peripheral blood mononuclear cells. Rapid Communications in Mass Spectrometry, 2013, 27, 481-488.	0.7	16
121	Hydrogenated bilayer wurtzite SiC nanofilms: a two-dimensional bipolar magnetic semiconductor material. Physical Chemistry Chemical Physics, 2013, 15, 497-503.	1.3	55
122	Systematic investigation of orthogonal SPE sample preparation for the LC–MS/MS bioanalysis of a monoclonal antibody after pellet digestion. Bioanalysis, 2013, 5, 2379-2391.	0.6	32
123	Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices. CrystEngComm, 2013, 15, 597-603.	1.3	34
124	A rugged and accurate liquid chromatography–tandem mass spectrometry method for the determination of asunaprevir, an NS3 protease inhibitor, in plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 921-922, 81-86.	1.2	16
125	Hydrothermal synthesis and photoluminescence properties of rare-earth niobate and tantalate nanophosphors. Dalton Transactions, 2013, 42, 8041.	1.6	26
126	Luminescent properties of LaKNaTaO5 and rare-earth-doped LaKNaTaO5 synthesized by an improved hydroxide melt method. Journal of Luminescence, 2013, 135, 196-200.	1.5	10

#	Article	IF	CITATIONS
127	Bioanalysis Young Investigator: Announcing our finalists!. Bioanalysis, 2013, 5, 1963-1964.	0.6	1
128	A User-Friendly Robotic Sample Preparation Program for Fully Automated Biological Sample Pipetting and Dilution to Benefit the Regulated Bioanalysis. Journal of the Association for Laboratory Automation, 2012, 17, 211-221.	2.8	20
129	Simple and efficient digestion of a monoclonal antibody in serum using pellet digestion: comparison with traditional digestion methods in LC–MS/MS bioanalysis. Bioanalysis, 2012, 4, 2887-2896.	0.6	39
130	Diamondization of chemically functionalized graphene and graphene–BN bilayers. Physical Chemistry Chemical Physics, 2012, 14, 8179.	1.3	52
131	Automation in new frontiers of bioanalysis: a key for quality and efficiency. Bioanalysis, 2012, 4, 2759-2762.	0.6	13
132	Systematic evaluation of the root cause of nonâ€linearity in liquid chromatography/tandem mass spectrometry bioanalytical assays and strategy to predict and extend the linear standard curve range. Rapid Communications in Mass Spectrometry, 2012, 26, 1465-1474.	0.7	44
133	Antioxidant Effects of Lycopene in African American Men with Prostate Cancer or Benign Prostate Hyperplasia: A Randomized, Controlled Trial. Cancer Prevention Research, 2011, 4, 711-718.	0.7	67
134	Estrogen Receptor α Enhances the Rate of Oxidative DNA Damage by Targeting an Equine Estrogen Catechol Metabolite to the Nucleus. Journal of Biological Chemistry, 2009, 284, 8633-8642.	1.6	29
135	Quantitative Bioanalysis of Proteins by Mass Spectrometry. Materials and Methods, 0, 5, .	0.0	3