
Giovanni Pennisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2831243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641987831.	1.5	109
2	The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clinical Neurophysiology, 2014, 125, 1509-1532.	0.7	92
3	Distinctive patterns of cortical excitability to transcranial magnetic stimulation in obstructive sleep apnea syndrome, restless legs syndrome, insomnia, and sleep deprivation. Sleep Medicine Reviews, 2015, 19, 39-50.	3.8	85
4	Transcranial magnetic stimulation in Alzheimer's disease: a neurophysiological marker of cortical hyperexcitability. Journal of Neural Transmission, 2011, 118, 587-598.	1.4	74
5	Cortical Plasticity in Depression. ASN Neuro, 2017, 9, 175909141771151.	1.5	74
6	Repetitive transcranial magnetic stimulation in patients with drug-resistant major depression: A six-month clinical follow-up study. International Journal of Psychiatry in Clinical Practice, 2015, 19, 252-258.	1.2	69
7	Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory–motor network in patients with restless legs syndrome. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641875997.	1.5	59
8	Cholinergic circuitry functioning in patients with vascular cognitive impairment – no dementia. Brain Stimulation, 2016, 9, 225-233.	0.7	51
9	Age, Height, and Sex on Motor Evoked Potentials: Translational Data From a Large Italian Cohort in a Clinical Environment. Frontiers in Human Neuroscience, 2019, 13, 185.	1.0	51
10	Neurophysiology of the "Celiac Brain― Disentangling Gut-Brain Connections. Frontiers in Neuroscience, 2017, 11, 498.	1.4	50
11	A Review of Transcranial Magnetic Stimulation in Vascular Dementia. Dementia and Geriatric Cognitive Disorders, 2011, 31, 71-80.	0.7	47
12	Different patterns of cortical excitability in major depression and vascular depression: a transcranial magnetic stimulation study. BMC Psychiatry, 2013, 13, 300.	1.1	47
13	Preserved Transcallosal Inhibition to Transcranial Magnetic Stimulation in Nondemented Elderly Patients with Leukoaraiosis. BioMed Research International, 2013, 2013, 1-5.	0.9	45
14	Motor cortex excitability in vascular depression. International Journal of Psychophysiology, 2011, 82, 248-253.	0.5	44
15	Direct comparison of cortical excitability to transcranial magnetic stimulation in obstructive sleep apnea syndrome and restless legs syndrome. Sleep Medicine, 2015, 16, 138-142.	0.8	44
16	Vascular Cognitive Impairment through the Looking Glass of Transcranial Magnetic Stimulation. Behavioural Neurology, 2017, 2017, 1-16.	1.1	44
17	Motor cortex excitability in Alzheimer's disease and in subcortical ischemic vascular dementia. Neuroscience Letters, 2004, 362, 95-98.	1.0	43
18	Enhanced motor cortex facilitation in patients with vascular cognitive impairment-no dementia. Neuroscience Letters, 2011, 503, 171-175.	1.0	43

GIOVANNI PENNISI

#	Article	IF	CITATIONS
19	Motor cortex plasticity in subcortical ischemic vascular dementia: What can TMS say?. Clinical Neurophysiology, 2015, 126, 851-852.	0.7	43
20	Correlation between Motor Cortex Excitability Changes and Cognitive Impairment in Vascular Depression: Pathophysiological Insights from a Longitudinal TMS Study. Neural Plasticity, 2016, 2016, 1-10.	1.0	43
21	Effect of a Gluten-Free Diet on Cortical Excitability in Adults with Celiac Disease. PLoS ONE, 2015, 10, e0129218.	1.1	42
22	Impaired Cerebral Haemodynamics in Vascular Depression: Insights From Transcranial Doppler Ultrasonography. Frontiers in Psychiatry, 2018, 9, 316.	1.3	42
23	Excitability of the Motor Cortex in De Novo Patients with Celiac Disease. PLoS ONE, 2014, 9, e102790.	1.1	42
24	Transcranial Doppler ultrasound in vascular cognitive impairment-no dementia. PLoS ONE, 2019, 14, e0216162.	1.1	41
25	TMS follow-up study in patients with vascular cognitive impairment-no dementia. Neuroscience Letters, 2013, 534, 155-159.	1.0	38
26	Cortical involvement in celiac disease before and after long-term gluten-free diet: A Transcranial Magnetic Stimulation study. PLoS ONE, 2017, 12, e0177560.	1.1	38
27	Cognitive Impairment and Celiac Disease: Is Transcranial Magnetic Stimulation a Trait d'Union between Gut and Brain?. International Journal of Molecular Sciences, 2018, 19, 2243.	1.8	31
28	Motor cortex hyperexcitability in subcortical ischemic vascular dementia. Archives of Gerontology and Geriatrics, 2011, 53, e111-e113.	1.4	26
29	Facilitatory/inhibitory intracortical imbalance in REM sleep behavior disorder: early electrophysiological marker of neurodegeneration?. Sleep, 2020, 43, .	0.6	26
30	Update on intensive motor training in spinocerebellar ataxia: time to move a step forward?. Journal of International Medical Research, 2020, 48, 030006051985462.	0.4	25
31	Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson's Disease and Progressive Supranuclear Palsy. Journal of Personalized Medicine, 2020, 10, 274.	1.1	24
32	Moderate Mocha Coffee Consumption Is Associated with Higher Cognitive and Mood Status in a Non-Demented Elderly Population with Subcortical Ischemic Vascular Disease. Nutrients, 2021, 13, 536.	1.7	23
33	Motor and Perceptual Recovery in Adult Patients with Mild Intellectual Disability. Neural Plasticity, 2018, 2018, 1-9.	1.0	18
34	<p>Migrainous Infarction And Cerebral Vasospasm: Case Report And Literature Review</p> . Journal of Pain Research, 2019, Volume 12, 2941-2950.	0.8	16
35	TMS Correlates of Pyramidal Tract Signs and Clinical Motor Status in Patients with Cervical Spondylotic Myelopathy. Brain Sciences, 2020, 10, 806.	1.1	15
36	Fear and disgust: case report of two uncommon emotional disturbances evoked by visual disperceptions after a right temporal-insular stroke. BMC Neurology, 2019, 19, 193.	0.8	14

#	Article	IF	CITATIONS
37	Daily mocha coffee intake and psycho-cognitive status in non-demented non-smokers subjects with subcortical ischaemic vascular disease. International Journal of Food Sciences and Nutrition, 2022, 73, 821-828.	1.3	13
38	Adjunct Diagnostic Value of Transcranial Magnetic Stimulation in Mucopolysaccharidosis-Related Cervical Myelopathy: A Pilot Study. Brain Sciences, 2019, 9, 200.	1.1	12
39	"Mute―plantar response: does the cortico-spinal tract "speak�. Brain Stimulation, 2019, 12, 1579-158	0.0.7	12
40	Response to the letter to the editor "Cortical excitability in restless legs syndrome― Sleep Medicine, 2016, 21, 175.	0.8	10
41	Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients, 2021, 13, 1530.	1.7	9
42	Preserved central cholinergic functioning to transcranial magnetic stimulation in de novo patients with celiac disease. PLoS ONE, 2021, 16, e0261373.	1.1	6