
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2831135/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Furfurylation of wood from fast-growing tropical species to enhance their resistance to subterranean termite. European Journal of Wood and Wood Products, 2021, 79, 1007-1015.                                                                                        | 2.9 | 14        |
| 2  | Effect of furfurylation treatment on technological properties of short rotation teak wood. Journal of Materials Research and Technology, 2021, 12, 1689-1699.                                                                                                         | 5.8 | 22        |
| 3  | The effect of heat treatment on the characteristics of the short rotation teak. International Wood<br>Products Journal, 2021, 12, 218-227.                                                                                                                            | 1.1 | 4         |
| 4  | Intraspecific variability of quantity and chemical composition of ethanolic knotwood extracts along<br>the stems of three industrially important softwood species: Abies alba, Picea abies and Pseudotsuga<br>menziesii. Holzforschung, 2021, 75, 168-179.            | 1.9 | 8         |
| 5  | Effect of glycerol-maleic anhydride treatment on technological properties of short rotation teak wood. Wood Science and Technology, 2021, 55, 1795-1819.                                                                                                              | 3.2 | 9         |
| 6  | A generic information framework for decision-making in a forest-based bio-economy. Annals of Forest<br>Science, 2021, 78, .                                                                                                                                           | 2.0 | 2         |
| 7  | Natural durability of four Tunisian <i>Eucalyptus</i> spp. and their respective compositions in extractives. Holzforschung, 2020, 74, 260-274.                                                                                                                        | 1.9 | 8         |
| 8  | Yield and compositions of bark phenolic extractives from three commercially significant softwoods show intra- and inter-specific variation. Plant Physiology and Biochemistry, 2020, 155, 346-356.                                                                    | 5.8 | 9         |
| 9  | Quantitative and qualitative composition of bark polyphenols changes longitudinally with bark maturity in Abies alba Mill Annals of Forest Science, 2020, 77, 1.                                                                                                      | 2.0 | 27        |
| 10 | Anti-termite and anti-fungal bio-sourced wood preservation ingredients from <i>Dacryodes edulis</i> (G. Don) H.J. Lam resin. Holzforschung, 2020, 74, 745-753.                                                                                                        | 1.9 | 7         |
| 11 | Resistance against subterranean termite of beech wood impregnated with different derivatives of glycerol or polyglycerol and maleic anhydride followed by thermal modification: a field test study.<br>European Journal of Wood and Wood Products, 2020, 78, 387-392. | 2.9 | 8         |
| 12 | Relationships between chemical composition and decay durability of Coula edulis Baill as an alternative wood species in Gabon. Wood Science and Technology, 2020, 54, 329-348.                                                                                        | 3.2 | 5         |
| 13 | Comparison of different treatments based on glycerol or polyglycerol additives to improve<br>properties of thermally modified wood. European Journal of Wood and Wood Products, 2019, 77,<br>799-810.                                                                 | 2.9 | 10        |
| 14 | Non-biocide antifungal and anti-termite wood preservation treatments based on combinations of<br>thermal modification with different chemical additives. European Journal of Wood and Wood<br>Products, 2019, 77, 1125-1136.                                          | 2.9 | 10        |
| 15 | Characterization of thermally modified short and long rotation teaks and the effects on coatings performance. Maderas: Ciencia Y Tecnologia, 2019, , 0-0.                                                                                                             | 0.7 | 11        |
| 16 | Comparison of teak wood properties according to forest management: short versus long rotation.<br>Annals of Forest Science, 2018, 75, 1.                                                                                                                              | 2.0 | 39        |
| 17 | Improvement of beech wood properties by <i>in situ</i> formation of polyesters of citric and tartaric acid in combination with glycerol. Holzforschung, 2018, 72, 291-299.                                                                                            | 1.9 | 26        |
| 18 | Thermal stability of Abies alba wood according to its radial position and forest management.<br>European Journal of Wood and Wood Products, 2018, 76, 1669-1676.                                                                                                      | 2.9 | 4         |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot<br>Trametes versicolor. Scientific Reports, 2018, 8, 8472.                                                                     | 3.3 | 38        |
| 20 | Inhibition of fungi with wood extractives and natural durability of five Cameroonian wood species.<br>Industrial Crops and Products, 2018, 123, 183-191.                                                                     | 5.2 | 30        |
| 21 | Intraspecific variation of European oak wood thermal stability according to radial position. Wood<br>Science and Technology, 2017, 51, 785-794.                                                                              | 3.2 | 12        |
| 22 | Derivatives of the Lignan 7â€2-Hydroxymatairesinol with Antioxidant Properties and Enhanced<br>Lipophilicity. Journal of Natural Products, 2017, 80, 1783-1790.                                                              | 3.0 | 2         |
| 23 | Knot extractives: a model for analysing the eco-physiological factors that control the within and between-tree variability. Trees - Structure and Function, 2017, 31, 1619-1633.                                             | 1.9 | 12        |
| 24 | Characterization of bark extractives of different industrial Indonesian wood species for potential valorization. Industrial Crops and Products, 2017, 108, 121-127.                                                          | 5.2 | 24        |
| 25 | Resistance of thermally modified ash (Fraxinus excelsior L.) wood under steam pressure against rot<br>fungi, soil-inhabiting micro-organisms and termites. European Journal of Wood and Wood Products,<br>2017, 75, 249-262. | 2.9 | 16        |
| 26 | Feasibility study of utilization of commercially available polyurethane resins to develop non-biocidal wood preservation treatments. European Journal of Wood and Wood Products, 2017, 75, 877-884.                          | 2.9 | 4         |
| 27 | Tartaric acid catalyzed furfurylation of beech wood. Wood Science and Technology, 2017, 51, 379-394.                                                                                                                         | 3.2 | 41        |
| 28 | Improvement of the durability of heat-treated wood against termites. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.                                                                                                             | 0.7 | 20        |
| 29 | Control of wood thermal treatment and its effects on decay resistance: a review. Annals of Forest Science, 2016, 73, 571-583.                                                                                                | 2.0 | 145       |
| 30 | New alternatives for wood preservation based on thermal and chemical modification of wood— a review. Annals of Forest Science, 2016, 73, 559-570.                                                                            | 2.0 | 148       |
| 31 | Total phenolic and lignin contents, phytochemical screening, antioxidant and fungal inhibition properties of the heartwood extractives of ten Congo Basin tree species. Annals of Forest Science, 2016, 73, 287-296.         | 2.0 | 34        |
| 32 | Decay and termite resistance of pine blocks impregnated with different additives and subjected to heat treatment. European Journal of Wood and Wood Products, 2016, 74, 37-42.                                               | 2.9 | 19        |
| 33 | Variations in the natural density of European oak wood affect thermal degradation during thermal modification. Annals of Forest Science, 2016, 73, 277-286.                                                                  | 2.0 | 18        |
| 34 | Phenolic and lipophilic extractives in Pinus merkusii Jungh. et de Vries knots and stemwood. Industrial<br>Crops and Products, 2015, 69, 466-471.                                                                            | 5.2 | 26        |
| 35 | Quantification and characterization of knotwood extractives of 12 European softwood and hardwood species. Annals of Forest Science, 2015, 72, 277-284.                                                                       | 2.0 | 45        |
| 36 | Development of new wood treatments combining boron impregnation and thermo modification: effect of additives on boron leachability. European Journal of Wood and Wood Products, 2014, 72, 355-365.                           | 2.9 | 29        |

| #  | Article                                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Antioxidant activities, total phenolic contents and chemical compositions of extracts from four<br>Cameroonian woods: Padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi<br>(Baillonella toxisperma), and movingui (Distemonanthus benthamianus). Industrial Crops and<br>Products, 2013, 41, 71-77. | 5.2 | 46        |
| 38 | Effect of heat treatment intensity on some conferred properties of different European softwood and hardwood species. Wood Science and Technology, 2013, 47, 663-673.                                                                                                                                                          | 3.2 | 48        |
| 39 | Comparison of chemical composition and decay durability of heat treated wood cured under<br>different inert atmospheres: Nitrogen or vacuum. Polymer Degradation and Stability, 2013, 98, 677-681.                                                                                                                            | 5.8 | 56        |
| 40 | The average carbon oxidation state of thermally modified wood as a marker for its decay resistance against Basidiomycetes. Polymer Degradation and Stability, 2013, 98, 2140-2145.                                                                                                                                            | 5.8 | 14        |
| 41 | Hydrogels obtained from an original catanionic system for efficient formulation of boron wood-preservatives. International Biodeterioration and Biodegradation, 2013, 77, 123-126.                                                                                                                                            | 3.9 | 7         |
| 42 | Thermodesorption coupled to GC–MS to characterize volatiles formation kinetic during wood thermodegradation. Journal of Analytical and Applied Pyrolysis, 2013, 101, 96-102.                                                                                                                                                  | 5.5 | 20        |
| 43 | Comparison of mechanical properties of heat treated beech wood cured under nitrogen or vacuum.<br>Polymer Degradation and Stability, 2013, 98, 1762-1765.                                                                                                                                                                     | 5.8 | 36        |
| 44 | Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula.<br>European Journal of Wood and Wood Products, 2012, 70, 519-524.                                                                                                                                                       | 2.9 | 32        |
| 45 | Utilization of thermodesorption coupled to GC–MS to study stability of different wood species to thermodegradation. Journal of Analytical and Applied Pyrolysis, 2011, 92, 376-383.                                                                                                                                           | 5.5 | 54        |
| 46 | Effect of extractives on conferred and natural durability of Cupressus lusitanica heartwood. Annals of Forest Science, 2010, 67, 504-504.                                                                                                                                                                                     | 2.0 | 23        |
| 47 | Prediction of the decay resistance of heat treated wood on the basis of its elemental composition.<br>Polymer Degradation and Stability, 2010, 95, 94-97.                                                                                                                                                                     | 5.8 | 37        |
| 48 | Modification of grape seed and wood tannins to lipophilic antioxidant derivatives. Industrial Crops and Products, 2010, 31, 509-515.                                                                                                                                                                                          | 5.2 | 24        |
| 49 | Investigation of the chemical modifications of beech wood lignin during heat treatment. Polymer<br>Degradation and Stability, 2010, 95, 1721-1726.                                                                                                                                                                            | 5.8 | 131       |
| 50 | Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polymer Degradation and Stability, 2010, 95, 2255-2259.                                                                                                                                | 5.8 | 90        |
| 51 | Effects of monoglycerides on leachability and efficacy of boron wood preservatives against decay and termites. International Biodeterioration and Biodegradation, 2010, 64, 135-138.                                                                                                                                          | 3.9 | 12        |
| 52 | Elemental composition of wood as a potential marker to evaluate heat treatment intensity. Polymer<br>Degradation and Stability, 2009, 94, 365-368.                                                                                                                                                                            | 5.8 | 42        |
| 53 | Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polymer Degradation and Stability, 2008, 93, 401-405.                                                                                                                                                           | 5.8 | 67        |
| 54 | Evidence of fungicidal and termicidal properties of Prunus africana heartwood extractives.<br>Holzforschung, 2007, 61, 323-325.                                                                                                                                                                                               | 1.9 | 29        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood<br>resource in Kenya: Characterisation of physicochemical properties and improvement of bio-resistance.<br>Bioresource Technology, 2007, 98, 3478-3486. | 9.6 | 59        |
| 56 | Evidence of char formation during wood heat treatment by mild pyrolysis. Polymer Degradation and Stability, 2007, 92, 997-1002.                                                                                                                            | 5.8 | 61        |
| 57 | Wettability of waterborne coatings on chemically and thermally modified pine wood. Journal of<br>Coatings Technology Research, 2007, 4, 203-206.                                                                                                           | 2.5 | 55        |
| 58 | Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability, 2006, 91, 393-397.                                                                                                                      | 5.8 | 252       |
| 59 | Investigation of wood wettability changes during heat treatment on the basis of chemical analysis.<br>Polymer Degradation and Stability, 2005, 89, 1-5.                                                                                                    | 5.8 | 285       |
| 60 | Wettability changes and mass loss during heat treatment of wood. Holzforschung, 2005, 59, 35-37.                                                                                                                                                           | 1.9 | 77        |
| 61 | Synthesis of poly(glycerol methacrylate) and its application to dimensional stabilization of wood.<br>Journal of Applied Polymer Science, 2003, 88, 743-749.                                                                                               | 2.6 | 9         |
| 62 | Mechanical properties and biological durability in soil contact of chemically modified wood treated<br>in an open or in a closed system using glycerol/maleic anhydride systems. Wood Material Science and                                                 | 2.3 | 4         |

Engineering, 0, , 1-10.