
Zhilin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2830926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Modification of Activated Carbons by Oleic Acid under Microwave Heating to Improve Adsorptive Removal of Naphthalene in Aqueous Solutions. Processes, 2021, 9, 391.	1.3	6
2	Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. Ultrasonics Sonochemistry, 2021, 74, 105566.	3.8	76
3	Sonochemical Preparation of Inorganic Nanoparticles and Nanocomposites for Drug Release–A Review. Industrial & Engineering Chemistry Research, 2021, 60, 10011-10032.	1.8	10
4	Adsorptive decontamination of antibiotic-spiked water and milk using commercial and modified activated carbons. Journal of Environmental Chemical Engineering, 2021, 9, 105544.	3.3	9
5	Surfactants-assisted preparation of BiVO4 with novel morphologies via microwave method and CdS decoration for enhanced photocatalytic properties. Journal of Hazardous Materials, 2020, 387, 122019.	6.5	39
6	Sonozonation (sonication/ozonation) for the degradation of organic contaminants – A review. Ultrasonics Sonochemistry, 2020, 68, 105195.	3.8	44
7	Feasibility and the Mechanism of Desorption of Phenolic Compounds from Activated Carbons. Industrial & Engineering Chemistry Research, 2020, 59, 12223-12231.	1.8	17
8	Adsorptive Recovery of Iopamidol from Aqueous Solution and Parallel Reuse of Activated Carbon: Batch and Flow Study. Industrial & Engineering Chemistry Research, 2019, 58, 7284-7295.	1.8	13
9	Plant and Biomass Extraction and Valorisation under Hydrodynamic Cavitation. Processes, 2019, 7, 965.	1.3	30
10	Harnessing cavitational effects for green process intensification. Ultrasonics Sonochemistry, 2019, 52, 530-546.	3.8	37
11	Sonochemical preparation of alumina-spheres loaded with Pd nanoparticles for 2-butyne-1,4-diol semi-hydrogenation in a continuous flow microwave reactor. RSC Advances, 2018, 8, 7029-7039.	1.7	18
12	Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems. Powder Technology, 2018, 329, 207-216.	2.1	54
13	A novel hybrid of β-cyclodextrin grafted onto activated carbon for rapid adsorption of naphthalene from aqueous solution. Journal of Molecular Liquids, 2018, 255, 160-167.	2.3	28
14	Effects of ultrasonic and hydrodynamic cavitation on the treatment of cork wastewater by flocculation and Fenton processes. Ultrasonics Sonochemistry, 2018, 40, 3-8.	3.8	32
15	Microwave-assisted rapid synthesis of Ag-β-cyclodextrin/TiO2/AC with exposed {001} facets for highly efficient naphthalene degradation under visible light. Catalysis Communications, 2018, 104, 96-100.	1.6	23
16	Cork wastewater purification in a cooperative flocculation/adsorption process with microwave-regenerated activated carbon. Journal of Hazardous Materials, 2018, 360, 412-419.	6.5	25
17	Ultrasonically improved semi-hydrogenation of alkynes to (Z-)alkenes over novel lead-free Pd/Boehmite catalysts. Ultrasonics Sonochemistry, 2017, 35, 664-672.	3.8	14
18	Oxidative polymerization of waste cooking oil with air under hydrodynamic cavitation. Green Processing and Synthesis, 2017, 6, .	1.3	10

ZHILIN WU

#	Article	IF	CITATIONS
19	Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 257-262.	2.7	22
20	Selective hydrogenation of alkynes over ppm-level Pd/boehmite/Al ₂ O ₃ beads in a continuous-flow reactor. Catalysis Science and Technology, 2017, 7, 4780-4791.	2.1	15
21	Microwave-assisted one-step preparation of macadamia nut shell-based activated carbon for efficient adsorption of Reactive Blue. New Journal of Chemistry, 2017, 41, 15373-15383.	1.4	28
22	Enhanced PAHs adsorption using iron-modified coal-based activated carbon via microwave radiation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 235-243.	2.7	49
23	Microwave-assisted modification of activated carbon with ammonia for efficient pyrene adsorption. Journal of Industrial and Engineering Chemistry, 2016, 39, 27-36.	2.9	52
24	Efficient partial hydrogenation of 2-butyne-1,4-diol and other alkynes under microwave irradiation. Chemical Engineering and Processing: Process Intensification, 2016, 110, 220-224.	1.8	14
25	Decomposition of chloroform and succinic acid by ozonation in a suction-cavitation system: Effects of gas flow. Separation and Purification Technology, 2016, 161, 25-31.	3.9	18
26	Comparative study of naphthalene adsorption on activated carbon prepared by microwave-assisted synthesis from different typical coals in Xinjiang. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 563-568.	2.7	22
27	Adsorption behavior of phenanthrene onto coal-based activated carbon prepared by microwave activation. Korean Journal of Chemical Engineering, 2015, 32, 1129-1136.	1.2	28
28	Ultrasound―and Microwaveâ€Assisted Preparation of Leadâ€Free Palladium Catalysts: Effects on the Kinetics of Diphenylacetylene Semiâ€Hydrogenation. ChemCatChem, 2015, 7, 952-959.	1.8	27
29	Microwave-induced crystallization of AC/TiO2 for improving the performance of rhodamine B dye degradation. Applied Surface Science, 2015, 351, 104-112.	3.1	62
30	Critical factors in sonochemical degradation of fumaric acid. Ultrasonics Sonochemistry, 2015, 27, 148-152.	3.8	18
31	Eutrophic water purification efficiency using a combination of hydrodynamic cavitation and ozonation on a pilot scale. Environmental Science and Pollution Research, 2015, 22, 6298-6307.	2.7	13
32	Preparation of activated carbon from Xinjiang region coal by microwave activation and its application in naphthalene, phenanthrene, and pyrene adsorption. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53, 160-167.	2.7	69
33	Adsorption of naphthalene from aqueous solution on coal-based activated carbon modified by microwave induction: Microwave power effects. Chemical Engineering and Processing: Process Intensification, 2015, 91, 67-77.	1.8	90
34	Microwave-Assisted Synthesis of Carbon-Based (N, Fe)-Codoped TiO2 for the Photocatalytic Degradation of Formaldehyde. Nanoscale Research Letters, 2015, 10, 360.	3.1	31
35	Effects of Ultrasound and Microwaves on Selective Reduction: Catalyst Preparation and Reactions. ChemCatChem, 2014, 6, 2762-2783.	1.8	36
36	Phosphorus removal from aqueous solutions using a synthesized adsorbent prepared from mineralized refuse and sewage sludge. Environmental Technology (United Kingdom), 2013, 34, 1489-1496.	1.2	22

ZHILIN WU

#	Article	IF	CITATIONS
37	Roles of vegetation, flow type and filled depth on livestock wastewater treatment through multi-level mineralized refuse-based constructed wetlands. Ecological Engineering, 2012, 39, 7-15.	1.6	42
38	Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation. Journal of Hazardous Materials, 2012, 235-236, 152-158.	6.5	88
39	Enhanced effect of suction-cavitation on the ozonation of phenol. Journal of Hazardous Materials, 2011, 190, 375-380.	6.5	44
40	Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation. Environmental Science and Pollution Research, 2010, 17, 674-687.	2.7	34
41	Ultrasound-assisted oxidative desulfurization of liquid fuels and its industrial application. Ultrasonics Sonochemistry, 2010, 17, 1027-1032.	3.8	96
42	Chemistry driven by suction. Green Chemistry, 2009, 11, 1026.	4.6	15
43	Oxidation of Primary Aromatic Amines under Irradiation with Ultrasound and/or Microwaves. Synthetic Communications, 2008, 38, 2619-2624.	1.1	16
44	Degradation of Phenol under Combined Irradiation of Microwaves and Ultrasound. Environmental Science & Technology, 2008, 42, 8083-8087.	4.6	75
45	Aquasonolysis of thiophene and its derivatives. Ultrasonics Sonochemistry, 2006, 13, 86-91.	3.8	10
46	Aquasonolysis of thioethers. Ultrasonics Sonochemistry, 2006, 13, 371-378.	3.8	7
47	Sonochemical reaction of selected cyclic C6H hydrocarbons in organic solvents. Ultrasonics Sonochemistry, 2005, 12, 127-131.	3.8	6
48	Benzene formation during aquasonolysis of selected cyclic C6H hydrocarbons. Ultrasonics Sonochemistry, 2005, 12, 133-136.	3.8	7
49	Ultrasonic Cleavage of Thioethers. Journal of Physical Chemistry A, 2005, 109, 3762-3766.	1.1	25
50	Roles of Hydrophobicity and Volatility of Organic Substrates on Sonolytic Kinetics in Aqueous Solutions. Journal of Physical Chemistry A, 2005, 109, 6521-6526.	1.1	49
51	Aquasonolysis of selected cyclic C6H hydrocarbons. Ultrasonics Sonochemistry, 2004, 11, 187-190.	3.8	14