Steven De Feyter

List of Publications by Citations

Source: https://exaly.com/author-pdf/2830626/steven-de-feyter-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

69 19,213 117 449 h-index g-index citations papers 6.78 20,818 489 9.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
449	Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. <i>Chemical Society Reviews</i> , 2003 , 32, 139-50	58.5	908
448	Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7298-332	16.4	565
447	Self-assembly at the liquid/solid interface: STM reveals. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 4290)- <u>3</u> .Q2	418
446	Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces. <i>Chemical Society Reviews</i> , 2009 , 38, 402-21	58.5	409
445	Chemical vapour deposition of zeolitic imidazolate framework thin films. <i>Nature Materials</i> , 2016 , 15, 304-10	27	387
444	Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. <i>Nature Chemistry</i> , 2014 , 6, 126-32	17.6	384
443	Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16613-25	16.4	323
442	One building block, two different supramolecular surface-confined patterns: concentration in control at the solid-liquid interface. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2964-8	16.4	255
441	Scanning tunneling microscopy: a unique tool in the study of chirality, dynamics, and reactivity in physisorbed organic monolayers. <i>Accounts of Chemical Research</i> , 2000 , 33, 520-31	24.3	246
440	Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation. <i>ACS Nano</i> , 2015 , 9, 5520-35	16.7	221
439	Self-Assembly of Bisurea Compounds in Organic Solvents and on Solid Substrates. <i>Chemistry - A European Journal</i> , 1997 , 3, 1238-1243	4.8	209
438	Conjugated Covalent Organic Frameworks via Michael Addition-Elimination. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2421-2427	16.4	194
437	Two-dimensional chirality at liquid-solid interfaces. <i>Chemical Society Reviews</i> , 2009 , 38, 722-36	58.5	192
436	Pi-conjugated oligo-(p-phenylenevinylene) rosettes and their tubular self-assembly. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 74-8	16.4	186
435	Solvent controlled self-assembly at the liquid-solid interface revealed by STM. <i>Journal of the American Chemical Society</i> , 2006 , 128, 317-25	16.4	185
434	Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface. <i>Accounts of Chemical Research</i> , 2012 , 45, 1309-20	24.3	174
433	Structural transformation of a two-dimensional molecular network in response to selective guest inclusion. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2831-4	16.4	174

432	Terrylenimides: New NIR Fluorescent Dyes. <i>Chemistry - A European Journal</i> , 1997 , 3, 219-25	4.8	169
431	Light- and STM-Tip-Induced Formation of One-Dimensional and Two-Dimensional Organic Nanostructures <i>Langmuir</i> , 2003 , 19, 6474-6482	4	163
430	Structurally defined graphene nanoribbons with high lateral extension. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18169-72	16.4	162
429	Temperature-induced structural phase transitions in a two-dimensional self-assembled network. Journal of the American Chemical Society, 2013 , 135, 12068-75	16.4	158
428	Supramolecular surface-confined architectures created by self-assembly of triangular phenylene-ethynylene macrocycles via van der Waals interaction. <i>Chemical Communications</i> , 2010 , 46, 8507-25	5.8	158
427	Frontiers of supramolecular chemistry at solid surfaces. <i>Chemical Society Reviews</i> , 2017 , 46, 2520-2542	58.5	155
426	Control and induction of surface-confined homochiral porous molecular networks. <i>Nature Chemistry</i> , 2011 , 3, 714-9	17.6	155
425	Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. <i>ACS Nano</i> , 2018 , 12, 7445-7481	16.7	146
424	Programmable hierarchical three-component 2D assembly at a liquid-solid interface: recognition, selection, and transformation. <i>Nano Letters</i> , 2008 , 8, 2541-6	11.5	145
423	Two-dimensional crystal engineering: a four-component architecture at a liquid-solid interface. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7353-7	16.4	140
422	Molecular clusters in two-dimensional surface-confined nanoporous molecular networks: structure, rigidity, and dynamics. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7119-29	16.4	140
421	Molecular geometry directed Kagomland honeycomb networks: toward two-dimensional crystal engineering. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3502-3	16.4	133
420	Host-guest chemistry in two-dimensional supramolecular networks. <i>Chemical Communications</i> , 2016 , 52, 11465-11487	5.8	131
419	Submolecularly Resolved Polymerization of Diacetylene Molecules on the Graphite Surface Observed with Scanning Tunneling Microscopy. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 2601-2603		126
418	Synthesis and controlled self-assembly of covalently linked hexa-peri-hexabenzocoronene/perylene diimide dyads as models to study fundamental energy and electron transfer processes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 5876-86	16.4	124
417	Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. <i>ACS Nano</i> , 2014 , 8, 11622-30	16.7	122
416	Solvent Codeposition and Cis T rans Isomerization of Isophthalic Acid Derivatives Studied by STM. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 19636-19641		116
415	2D networks of rhombic-shaped fused dehydrobenzo[12]annulenes: structural variations under concentration control. <i>Journal of the American Chemical Society</i> , 2009 , 131, 17583-90	16.4	114

414	Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures. <i>Nano Letters</i> , 2005 , 5, 77-81	11.5	112
413	Solvent-Resistant Nanofiltration Membranes Based on Multilayered Polyelectrolyte Complexes. <i>Chemistry of Materials</i> , 2008 , 20, 3876-3883	9.6	110
412	Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by Keggin polyoxometallate ions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10911-	.9 ^{16.4}	105
411	Fluorescence and Intramolecular Energy Transfer in Polyphenylene Dendrimers. <i>Macromolecules</i> , 2003 , 36, 5918-5925	5.5	105
410	Controlled self-assembly of C3-symmetric hexa-peri-hexabenzocoronenes with alternating hydrophilic and hydrophobic substituents in solution, in the bulk, and on a surface. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4439-48	16.4	101
409	Host Matrix Dependence on the Photophysical Properties of Individual Conjugated Polymer Chains. <i>Macromolecules</i> , 2003 , 36, 500-507	5.5	99
408	Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. <i>Nature Chemistry</i> , 2013 , 5, 621-7	17.6	97
407	Shape-persistent macrocycles with intraannular polar groups: synthesis, liquid crystallinity, and 2D organization. <i>Journal of the American Chemical Society</i> , 2004 , 126, 214-22	16.4	97
406	Nanostructuring graphene for controlled and reproducible functionalization. <i>Nanoscale</i> , 2015 , 7, 1566-8	8 5 .7	95
405	Oligo(p-phenylenevinylene)-peptide conjugates: synthesis and self-assembly in solution and at the solid-liquid interface. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14576-83	16.4	95
404	Expression of Chirality by Achiral Coadsorbed Molecules in Chiral Monolayers Observed by STM. Angewandte Chemie - International Edition, 1998 , 37, 1223-1226	16.4	94
403	Persistent, well-defined, monodisperse, pi-conjugated organic nanoparticles via G-quadruplex self-assembly. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4710-9	16.4	92
402	Influence of supramolecular organization on energy transfer properties in chiral oligo(p-phenylene vinylene) porphyrin assemblies. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9819-28	16.4	91
401	Tuning the supramolecular chirality of one- and two-dimensional aggregates with the number of stereogenic centers in the component porphyrins. <i>Journal of the American Chemical Society</i> , 2010 , 132, 9350-62	16.4	89
400	Star-shaped oligo(p-phenylenevinylene) substituted hexaarylbenzene: purity, stability, and chiral self-assembly. <i>Journal of the American Chemical Society</i> , 2007 , 129, 16190-6	16.4	88
399	Emerging solvent-induced homochirality by the confinement of achiral molecules against a solid surface. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4997-5001	16.4	87
398	Synthesis and Photomodulation of Rigid Polyphenylene Dendrimers with an Azobenzene Core. <i>Macromolecules</i> , 2003 , 36, 578-590	5.5	84
397	Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution-solid interface. <i>Nature Chemistry</i> , 2016 , 8, 711-7	17.6	83

(2005-2009)

396	Molekulare und supramolekulare Netzwerke auf Oberflühen: vom zweidimensionalen Kristall-Engineering bis zur Reaktivitil <i>Angewandte Chemie</i> , 2009 , 121, 7434-7469	3.6	82	
395	Imidazo[4,5-f]-1,10-phenanthrolines: Versatile Ligands for the Design of Metallomesogens. <i>Chemistry of Materials</i> , 2008 , 20, 1278-1291	9.6	82	
394	Toward Two-Dimensional Supramolecular Control of Hydrogen-Bonded Arrays: The Case of Isophthalic Acids. <i>Nano Letters</i> , 2003 , 3, 1485-1488	11.5	82	
393	Homo- and Heterochiral Supramolecular Tapes from Achiral, Enantiopure, and Racemic Promesogenic Formamides: Expression of Molecular Chirality in Two and Three Dimensions. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 3217-3220	16.4	81	
392	Bias-dependent visualization of electron donor (D) and electron acceptor (A) moieties in a chiral DAD triad molecule. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14968-9	16.4	77	
391	Synthesis of dehydrobenzo[18]annulene derivatives and formation of self-assembled monolayers: implications of core size on alkyl chain interdigitation. <i>Langmuir</i> , 2007 , 23, 10190-7	4	76	
390	Hydrogen bonding versus van der Waals interactions: competitive influence of noncovalent interactions on 2D self-assembly at the liquid-solid interface. <i>Chemistry - A European Journal</i> , 2010 , 16, 14447-58	4.8	75	
389	Noncovalent control for bottom-up assembly of functional supramolecular wires. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12602-3	16.4	75	
388	Structure and Mesomorphic Behavior of Alkoxy-Substituted Bis(phthalocyaninato)lanthanide(III) Complexes. <i>Chemistry of Materials</i> , 2003 , 15, 3930-3938	9.6	75	
387	Twisted Aromatic Frameworks: Readily Exfoliable and Solution-Processable Two-Dimensional Conjugated Microporous Polymers. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6946-6951	16.4	74	
386	Assembly and fiber formation of a gemini-type hexathienocoronene amphiphile for electrical conduction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13531-7	16.4	74	
385	High-resolution scanning tunneling microscopy characterization of mixed monolayer protected gold nanoparticles. <i>ACS Nano</i> , 2013 , 7, 8529-39	16.7	73	
384	Supramolecular Estacked Assemblies of Bis(urea)-Substituted Thiophene Derivatives and Their Electronic Properties Probed with Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy. <i>Nano Letters</i> , 2001 , 1, 201-206	11.5	72	
383	Molecular Organization of Bis-urea Substituted Thiophene Derivatives at the Liquid/Solid Interface Studied by Scanning Tunneling Microscopy. <i>Langmuir</i> , 2000 , 16, 10385-10391	4	71	
382	Mesostructure of Evaporated Porphyrin Thin Films: Porphyrin Wheel Formation. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 10588-10598	3.4	70	
381	Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap $N=9$ Armchair Graphene Nanoribbons. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3635-3638	16.4	69	
380	Role of substrate in directing the self-assembly of multicomponent supramolecular networks at the liquid-solid interface. <i>ACS Nano</i> , 2012 , 6, 8381-9	16.7	69	
379	Hydrogen bond directed self-assembly of core-substituted naphthalene bisimides with melamines in solution and at the graphite interface. <i>Organic and Biomolecular Chemistry</i> , 2005 , 3, 414-22	3.9	69	

378	One building block, two different nanoporous self-assembled monolayers: a combined STM and Monte Carlo study. <i>ACS Nano</i> , 2012 , 6, 897-903	16.7	68
377	Femtochemistry of Norrish type-I reactions: IV. Highly excited ketonesexperimental. <i>ChemPhysChem</i> , 2002 , 3, 79-97	3.2	68
376	Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4333		67
375	Nanopatterning of a covalent organic framework host-guest system. <i>Chemical Communications</i> , 2016 , 52, 68-71	5.8	66
374	Induction of chirality in an achiral monolayer at the liquid/solid interface by a supramolecular chiral auxiliary. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3171-7	16.4	66
373	2D self-assembly of oligo(p-phenylene vinylene) derivatives: from dimers to chiral rosettes. <i>Small</i> , 2005 , 1, 131-7	11	66
372	2D-Structures of Quadruple Hydrogen Bonded Oligo(p-phenylenevinylene)s on Graphite: ´Self-Assembly Behavior and Expression of Chirality. <i>Nano Letters</i> , 2004 , 4, 1175-1179	11.5	65
371	Fluorescent Self-Assembled Polyphenylene Dendrimer Nanofibers. <i>Macromolecules</i> , 2003 , 36, 8489-849	8 5.5	65
370	Site-selective guest inclusion in molecular networks of butadiyne-bridged pyridino and benzeno square macrocycles on a surface. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6666-7	16.4	64
369	Reversible Local and Global Switching in Multicomponent Supramolecular Networks: Controlled Guest Release and Capture at the Solution/Solid Interface. <i>ACS Nano</i> , 2015 , 9, 11608-17	16.7	63
368	Solvent-induced homochirality in surface-confined low-density nanoporous molecular networks. Journal of the American Chemical Society, 2012 , 134, 19568-71	16.4	63
367	One Building Block, Two Different Supramolecular Surface-Confined Patterns: Concentration in Control at the Solid Liquid Interface. <i>Angewandte Chemie</i> , 2008 , 120, 3006-3010	3.6	63
366	Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability. Journal of the American Chemical Society, 2016 , 138, 10136-9	16.4	63
365	Self-Assembly of Polyphenylene Dendrimers into Micrometer Long Nanofibers: An Atomic Force Microscopy Study. <i>Langmuir</i> , 2002 , 18, 2385-2391	4	62
364	Supramolecular control of two-dimensional phase behavior. <i>Chemistry - A European Journal</i> , 2003 , 9, 1198-206	4.8	61
363	Femtosecond dynamics of retro DielsAlder reactions: the concept of concertedness. <i>Chemical Physics Letters</i> , 1999 , 304, 134-144	2.5	61
362	Structure and function revealed with submolecular resolution at the liquid B olid interface. <i>Soft Matter</i> , 2009 , 5, 721-735	3.6	60
361	Morphology and performance of solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes: Study of preparation conditions. <i>Journal of Membrane Science</i> , 2010 , 358, 150-157	9.6	60

(2004-2006)

360	Chiral alignment of OPV chromophores: exploitation of the ureidophthalimide-based foldamer. Journal of the American Chemical Society, 2006 , 128, 16113-21	16.4	60
359	Metal ion complexation: a route to 2 D templates?. Chemistry - A European Journal, 2004, 10, 1124-32	4.8	60
358	Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces. <i>Bulletin of the Chemical Society of Japan</i> , 2016 , 89, 1277-1306	5.1	59
357	Lateral Fusion of Chemical Vapor Deposited $N = 5$ Armchair Graphene Nanoribbons. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9483-9486	16.4	58
356	Self-assembly of tetrathiafulvalene derivatives at a liquid/solid interfacedompositional and constitutional influence on supramolecular ordering. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4601		58
355	Processable Rylene Diimide Dyes up to 4 nm in Length: Synthesis and STM Visualization. <i>Chemistry - A European Journal</i> , 2013 , 19, 11842-6	4.8	57
354	Scanning tunneling microscopy-induced reversible phase transformation in the two-dimensional crystal of a positively charged discotic polycyclic aromatic hydrocarbon. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5686-8	16.4	56
353	Photoluminescence intensity fluctuations and electric-field-induced photoluminescence quenching in individual nanoclusters of poly(phenylenevinylene). <i>ChemPhysChem</i> , 2003 , 4, 260-7	3.2	56
352	Singlet-singlet annihilation in multichromophoric peryleneimide dendrimers, determined by fluorescence upconversion. <i>ChemPhysChem</i> , 2001 , 2, 49-55	3.2	56
351	Expression of Chirality and Visualization of Stereogenic Centers by Scanning Tunneling Microscopy. <i>Langmuir</i> , 1999 , 15, 2817-2822	4	56
350	Hydrogen-bonding and phase-forming behavior of a soluble quinacridone. <i>Advanced Materials</i> , 1996 , 8, 490-493	24	55
349	Giant molecular spoked wheels in giant voids: two-dimensional molecular self-assembly goes big. <i>Chemical Communications</i> , 2008 , 3897-9	5.8	54
348	Solid-state assemblies and optical properties of conjugated oligomers combining fluorene and thiophene units. <i>Journal of Materials Chemistry</i> , 2007 , 17, 728-735		54
347	Nanoscale Control over the Mixing Behavior of Surface-Confined Bicomponent Supramolecular Networks Using an Oriented External Electric Field. <i>ACS Nano</i> , 2017 , 11, 10903-10913	16.7	53
346	Tailoring surface-confined nanopores with photoresponsive groups. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8373-6	16.4	53
345	Femtosecond dynamics of valence-bond isomers of azines: transition states and conical intersections. <i>Chemical Physics Letters</i> , 1998 , 298, 129-140	2.5	53
344	Two-dimensional crystal engineering at the liquid-solid interface. <i>Topics in Current Chemistry</i> , 2009 , 287, 87-133		53
343	EConjugated Oligo-(p-phenylenevinylene) Rosettes and Their Tubular Self-Assembly. <i>Angewandte Chemie</i> , 2004 , 116, 76-80	3.6	53

342	Aggregation Properties of Soluble Quinacridones in Two and Three Dimensions. <i>Chemistry of Materials</i> , 2002 , 14, 989-997	9.6	53
341	Direct observation of the femtosecond nonradiative dynamics of azulene in a molecular beam: The anomalous behavior in the isolated molecule. <i>Journal of Chemical Physics</i> , 1999 , 110, 9785-9788	3.9	53
340	Self-assembled air-stable supramolecular porous networks on graphene. ACS Nano, 2013, 7, 10764-72	16.7	52
339	Molecularly defined shape-persistent 2D oligomers: the covalent-template approach to molecular spoked wheels. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6802-6	16.4	52
338	Hydrogen-bonded oligo(p-phenylenevinylene) functionalized with perylene bisimide: self-assembly and energy transfer. <i>Chemistry - A European Journal</i> , 2006 , 12, 9046-55	4.8	52
337	Dynamics in physisorbed monolayers of 5-alkoxy-isophthalic acid derivatives at the liquid/solid interface investigated by scanning tunneling microscopy. <i>Chemistry - A European Journal</i> , 2000 , 6, 3739-	46 ⁸	52
336	A tale of tails: alkyl chain directed formation of 2D porous networks reveals odd-even effects and unexpected bicomponent phase behavior. <i>ACS Nano</i> , 2013 , 7, 8031-42	16.7	51
335	Switching stiction and adhesion of a liquid on a solid. <i>Nature</i> , 2016 , 534, 676-9	50.4	50
334	Large all-hydrocarbon spoked wheels of high symmetry: modular synthesis, photophysical properties, and surface assembly. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1410-23	16.4	49
333	Structural Transformation of a Two-Dimensional Molecular Network in Response to Selective Guest Inclusion. <i>Angewandte Chemie</i> , 2007 , 119, 2889-2892	3.6	49
332	Substrate Effects in the Supramolecular Assembly of 1,3,5-Benzene Tricarboxylic Acid on Graphite and Graphene. <i>Langmuir</i> , 2015 , 31, 7016-24	4	48
331	Toward tunable doping in graphene FETs by molecular self-assembled monolayers. <i>Nanoscale</i> , 2013 , 5, 9640-4	7.7	48
330	Poly(sulfone)/sulfonated poly(ether ether ketone) blend membranes: Morphology study and application in the filtration of alcohol based feeds. <i>Journal of Membrane Science</i> , 2008 , 324, 67-75	9.6	48
329	Host-Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid-Solid Interfaces. <i>Langmuir</i> , 2017 , 33, 4601-4618	4	47
328	Towards enantioselective adsorption in surface-confined nanoporous systems. <i>Chemical Communications</i> , 2015 , 51, 4766-9	5.8	47
327	Femtosecond Dynamics of Norrish Type-II Reactions: Nonconcerted Hydrogen-Transfer and Diradical Intermediacy. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 260-263	16.4	47
326	Influence of polyanion type and cationic counter ion on the SRNF performance of polyelectrolyte membranes. <i>Journal of Membrane Science</i> , 2012 , 403-404, 216-226	9.6	46
325	Visualization of various supramolecular assemblies of oligo(para-phenylenevinylene)-melamine and perylene bisimide. <i>Chemistry - A European Journal</i> , 2008 , 14, 8579-89	4.8	46

(2004-2021)

324	Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. <i>Nature Materials</i> , 2021 , 20, 93-99	27	46	
323	Nucleoside-assisted self-assembly of oligo(p-phenylenevinylene)s at liquid/solid interface: chirality and nanostructures. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17764-71	16.4	45	
322	Layer-by-Layer Construction of Ultrathin Hybrid Films with Proteins and Clay Minerals. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12730-12740	3.8	45	
321	Photodimerization of Cinnamate Derivatives Studied by STM. <i>Nano Letters</i> , 2001 , 1, 353-359	11.5	45	
320	Self-Assembly under Confinement: Nanocorrals for Understanding Fundamentals of 2D Crystallization. <i>ACS Nano</i> , 2016 , 10, 10706-10715	16.7	44	
319	Adding Four Extra K-Regions to Hexa-peri-hexabenzocoronene. <i>Journal of the American Chemical Society</i> , 2016 , 138, 4726-9	16.4	44	
318	Two-Dimensional Crystal Engineering: A Four-Component Architecture at a LiquidBolid Interface. <i>Angewandte Chemie</i> , 2009 , 121, 7489-7493	3.6	44	
317	2-Naphthol Complexation by €Cyclodextrin: Influence of Added Short Linear Alcohols. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 19959-19966		44	
316	Molecule-molecule versus molecule-substrate interactions in the assembly of oligothiophenes at surfaces. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7898-908	3.4	43	
315	Towards supramolecular electronics. <i>Synthetic Metals</i> , 2004 , 147, 43-48	3.6	43	
314	Submolecular visualisation of palladium acetate complexation with a bipyridine derivative at a graphite surface. <i>Chemical Communications</i> , 2002 , 1894-5	5.8	43	
313	Tunable doping of graphene by using physisorbed self-assembled networks. <i>Nanoscale</i> , 2016 , 8, 20017-	-2 <u>9</u> 926	42	
312	Two-Dimensional Nanoporous Networks Formed by Liquid-to-Solid Transfer of Hydrogen-Bonded Macrocycles Built from DNA Bases. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 659-63	16.4	42	
311	Axial ligand control over monolayer and bilayer formation of metal-salophens at the liquid-solid interface. <i>Chemical Communications</i> , 2010 , 46, 2548-50	5.8	42	
310	Hexaterphenylyl- and Hexaquaterphenylylbenzene: The Behavior of Chromophores and Electrophores in a Restricted Space. <i>Angewandte Chemie International Edition in English</i> , 1996 , 35, 774-7	776	42	
309	Chiral expression at the solid-liquid interface: a joint experimental and theoretical study of the	4	40	
	self-assembly of chiral porphyrins on graphite. <i>Langmuir</i> , 2008 , 24, 9566-74			
308	A nanoscale view of supramolecular stereochemistry in self-assembled monolayers of enantiomers and racemates. <i>Langmuir</i> , 2004 , 20, 9628-35	4	40	

306	Self-assembly of an asymmetrically functionalized [6]helicene at liquid/solid interfaces. <i>Chemical Communications</i> , 2013 , 49, 2207-9	5.8	39
305	Mesoscale DNA structural changes on binding and photoreaction with Ru[(TAP)2PHEHAT]2+. Journal of the American Chemical Society, 2012 , 134, 10214-21	16.4	39
304	Towards two-dimensional nanoporous networks: crystal engineering at the solid[]quid interface. CrystEngComm, 2010 , 12, 3369	3.3	39
303	Femtosecond dynamics of diradicals: transition states, entropic configurations and stereochemistry. <i>Chemical Physics Letters</i> , 1999 , 303, 249-260	2.5	39
302	Halogen Bonding in Two-Dimensional Crystal Engineering. ChemistryOpen, 2020, 9, 225-241	2.3	38
301	Periodic Functionalization of Surface-Confined Pores in a Two-Dimensional Porous Network Using a Tailored Molecular Building Block. <i>ACS Nano</i> , 2016 , 10, 2113-20	16.7	38
300	Forced to align: flow-induced long-range alignment of hierarchical molecular assemblies from 2D to 3D. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4117-20	16.4	38
299	Two-dimensional self-assembly and phase behavior of an alkoxylated sandwich-type bisphthalocyanine and its phthalocyanine analogues at the liquid-solid interface. <i>Langmuir</i> , 2006 , 22, 723-8	4	38
298	Gergeants-and-Corporals Orinciple in chiral induction at an interface. <i>Chemical Communications</i> , 2013 , 49, 7477-9	5.8	37
297	Mixing behavior of alkoxylated dehydrobenzo [12]annulenes at the solid-liquid interface: scanning tunneling microscopy and Monte Carlo simulations. <i>ACS Nano</i> , 2011 , 5, 4145-57	16.7	37
296	Novel Cleft-Containing Porphyrins as Models for Studying Electron Transfer Processes. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 361-363		37
295	Covalent Template Approach Toward Functionalized Oligo-Alkyl-Substituted Shape-Persistent Macrocycles: Synthesis and Properties of Rings with a Loop. <i>Chemistry of Materials</i> , 2005 , 17, 5670-5683	3 ^{9.6}	37
294	Molecular doping of MoS2 transistors by self-assembled oleylamine networks. <i>Applied Physics Letters</i> , 2016 , 109, 253112	3.4	37
293	Functionalized surface-confined pores: guest binding directed by lateral noncovalent interactions at the solid-liquid interface. <i>ACS Nano</i> , 2014 , 8, 8683-94	16.7	36
292	Two-Dimensional Dye Assemblies on Surfaces Studied by Scanning Tunneling Microscopy. <i>Topics in Current Chemistry</i> , 2005 , 205-255		36
291	Nontrivial Differentiation between Two Identical Functionalities within the Same Molecule Studied by STM. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 8981-8987	3.4	36
290	Two-dimensional crystal engineering using halogen and hydrogen bonds: towards structural landscapes. <i>Chemical Science</i> , 2017 , 8, 3759-3769	9.4	35
289	Electric-Field-Mediated Reversible Transformation between Supramolecular Networks and Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11404-11408	16.4	35

288	Ultrathin Single Bilayer Separation Membranes Based on Hyperbranched Sulfonated Poly(aryleneoxindole). <i>Advanced Functional Materials</i> , 2017 , 27, 1605068	15.6	34
287	Formation of Multicomponent Star Structures at the Liquid/Solid Interface. <i>Langmuir</i> , 2015 , 31, 7032-40	4	34
286	Two-dimensional oligo(phenylene-ethynylene-butadiynylene)s: all-covalent nanoscale spoked wheels. <i>Chemistry - A European Journal</i> , 2009 , 15, 2518-35	4.8	34
285	A multivalent hexapod: conformational dynamics of six-legged molecules in self-assembled monolayers at a solid-liquid interface. <i>ACS Nano</i> , 2009 , 3, 1016-24	16.7	34
284	Bottom-up assembly of high density molecular nanowire cross junctions at a solid/liquid interface. <i>Chemical Communications</i> , 2008 , 703-5	5.8	33
283	Supramolecular hydrophobic-hydrophilic nanopatterns at electrified interfaces. <i>Nano Letters</i> , 2007 , 7, 791-5	11.5	33
282	Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states. <i>Chemical Physics Letters</i> , 2005 , 401, 503-508	2.5	33
281	On the formation of concentric 2D multicomponent assemblies at the solution-solid interface. <i>Chemical Communications</i> , 2017 , 53, 1108-1111	5.8	32
280	Multicomponent self-assembly with a shape-persistent N-heterotriangulene macrocycle on Au(111). <i>Chemistry - A European Journal</i> , 2015 , 21, 1652-9	4.8	32
279	Rigid tetracatenar liquid crystals derived from 1,10-phenanthroline. <i>Soft Matter</i> , 2008 , 4, 2172	3.6	32
278	Self-Assembled Monolayers as Templates for Linearly Nanopatterned Covalent Chemical Functionalization of Graphite and Graphene Surfaces. <i>ACS Nano</i> , 2018 , 12, 11520-11528	16.7	32
277	Intrinsic Properties of Single Graphene Nanoribbons in Solution: Synthetic and Spectroscopic Studies. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10416-10420	16.4	31
276	Tip-induced chemical manipulation of metal porphyrins at a liquid/solid interface. <i>Journal of the American Chemical Society</i> , 2014 , 136, 17418-21	16.4	31
275	Polyphenylene Dendrimer-Templated In Situ Construction of Inorganic Drganic Hybrid Rice-Shaped Architectures. <i>Advanced Functional Materials</i> , 2010 , 20, 43-49	15.6	31
274	Photophysical study of photoinduced electron transfer in a bis-thiophene substituted peryleneimide. <i>Photochemical and Photobiological Sciences</i> , 2005 , 4, 61-8	4.2	31
273	Design and STM investigation of intramolecular folding in self-assembled monolayers on the surface. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13884-5	16.4	31
272	Direct observation of chiral oligo(p-phenylenevinylene)s with scanning tunneling microscopy. Journal of Materials Chemistry, 2003 , 13, 2164-2167		31
271	Squeezing, then stacking: from breathing pores to three-dimensional ionic self-assembly under electrochemical control. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12951-4	16.4	30

270	Quantitative analysis of scanning tunneling microscopy images of mixed-ligand-functionalized nanoparticles. <i>Langmuir</i> , 2013 , 29, 13723-34	4	30
269	MARTINI Model for Physisorption of Organic Molecules on Graphite. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 15623-15631	3.8	30
268	Detection of RNA hybridization by pyrene-labeled probes. <i>ChemBioChem</i> , 2009 , 10, 1175-85	3.8	30
267	Polyphenylene Dendrimers with Pentafluorophenyl Units: Synthesis and Self-Assembly. <i>Macromolecules</i> , 2007 , 40, 4753-4761	5.5	30
266	Integrated Cleanroom Process for the Vapor-Phase Deposition of Large-Area Zeolitic Imidazolate Framework Thin Films. <i>Chemistry of Materials</i> , 2019 , 31, 9462-9471	9.6	29
265	Homochiral and heterochiral assembly preferences at different length scalesconglomerates and racemates in the same assemblies. <i>Chemical Communications</i> , 2013 , 49, 9320-2	5.8	29
264	Two-leg molecular ladders formed by hierarchical self-assembly of an organic radical. <i>Journal of the American Chemical Society</i> , 2009 , 131, 6246-52	16.4	29
263	Bimolecular Processes of 田erthiophene in a tyclodextrin Environment: An Exploratory Study. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 2129-2135		29
262	Losing the expression of molecular chirality in self-assembled physisorbed monolayers. <i>Nano Letters</i> , 2005 , 5, 1395-8	11.5	29
261	Homo- and Heterochiral Supramolecular Tapes from Achiral, Enantiopure, and Racemic Promesogenic Formamides: Expression of Molecular Chirality in Two and Three Dimensions. <i>Angewandte Chemie</i> , 2001 , 113, 3317-3320	3.6	29
260	Self-assembly of molecular tripods in two dimensions: structure and thermodynamics from computer simulations. <i>RSC Advances</i> , 2013 , 3, 25159	3.7	28
259	2001,		28
258	Synthesis of Triply Fused Porphyrin-Nanographene Conjugates. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11233-11237	16.4	27
257	Water transport properties of artificial cell walls. <i>Journal of Food Engineering</i> , 2012 , 108, 393-402	6	27
256	Role of pseudopolymorphism on concentration dependent competitive adsorption at a liquid/solid interface. <i>Chemical Communications</i> , 2010 , 46, 9125-7	5.8	27
255	Controlling the position of functional groups at the liquid/solid interface: impact of molecular symmetry and chirality. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20942-50	16.4	26
254	Locking of helicity and shape complementarity in diarylethene dimers on graphite. <i>Journal of the American Chemical Society</i> , 2008 , 130, 386-7	16.4	26
253	Scanning tunneling microscopy and spectroscopy of donor-acceptor-donor triads at the liquid/solid interface. <i>ChemPhysChem</i> , 2005 , 6, 2389-95	3.2	26

(2016-2017)

252	Confined polydiacetylene polymerization reactions for programmed length control. <i>Chemical Communications</i> , 2017 , 53, 4207-4210	5.8	25
251	Chemical modification of 2D materials using molecules and assemblies of molecules. <i>Advances in Physics: X</i> , 2019 , 4, 1625723	5.1	25
250	Impact of plasma pretreatment and pore size on the sealing of ultra-low-k dielectrics by self-assembled monolayers. <i>Langmuir</i> , 2014 , 30, 3832-44	4	25
249	Flow-assisted 2D polymorph selection: stabilizing metastable monolayers at the liquid-solid interface. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7595-8	16.4	25
248	Principles of molecular assemblies leading to molecular nanostructures. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 20120304	3	25
247	Molecular pentagonal tiling: self-assemblies of pentagonal-shaped macrocycles at liquid/solid interfaces. <i>CrystEngComm</i> , 2011 , 13, 5551	3.3	25
246	Thermodynamic controlled hierarchical assembly of ternary supramolecular networks at the liquid-solid interface. <i>Chemistry - A European Journal</i> , 2009 , 15, 5418-23	4.8	25
245	Electrochemical reactions at a porphyrin-copper interface. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 5422-30	3.6	25
244	Rastertunnelmikroskopisch beobachteter Ausdruck von Chiralitl durch achirale coadsorbierte Molekle in chiralen Monoschichten. <i>Angewandte Chemie</i> , 1998 , 110, 1281-1284	3.6	25
243	Adlayers and Low-Dimensional Assemblies of a TTF Derivative at a LiquidBolid Interface. <i>Nano Letters</i> , 2003 , 3, 1375-1378	11.5	25
242	Halogenated building blocks for 2D crystal engineering on solid surfaces: lessons from hydrogen bonding. <i>Chemical Science</i> , 2019 , 10, 3881-3891	9.4	24
241	Amplification of chirality in surface-confined supramolecular bilayers. <i>Nature Communications</i> , 2018 , 9, 3416	17.4	24
240	Pasteurian segregation on a surface imaged in situ at the molecular level. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11981-5	16.4	24
239	Chiral induction and amplification in supramolecular systems at the liquid-solid interface. <i>ChemPhysChem</i> , 2013 , 14, 1583-90	3.2	24
238	To mix or not to mix: 2D crystallization and mixing behavior of saturated and unsaturated aliphatic primary amides. <i>ACS Nano</i> , 2011 , 5, 9122-37	16.7	24
237	Computer simulation of chiral nanoporous networks on solid surfaces. <i>Langmuir</i> , 2010 , 26, 9506-15	4	24
236	Facile preparation of Langmuir B lodgett films of water-soluble proteins and hybrid protein l lay films. <i>Journal of Materials Chemistry</i> , 2010 , 20, 698-705		24
235	A Shape-Persistent Polyphenylene Spoked Wheel. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15539-15542	16.4	23

234	Surface-induced diastereomeric complex formation of a nucleoside at the liquid/solid interface: stereoselective recognition and preferential adsorption. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9811-9	16.4	23
233	Three-component Langmuir-Blodgett films consisting of surfactant, clay mineral, and lysozyme: construction and characterization. <i>Chemistry - A European Journal</i> , 2010 , 16, 2461-9	4.8	23
232	Observation of <code>\parallelerthiophene</code> excited dimer fluorescence in aqueous solutions of <code>\parallelerthiophene</code> excited excited and the solution of th	2.5	23
231	Self-Assembled Polyphenylene Dendrimer Nanofibers on Highly Oriented Pyrolytic Graphite Studied by Atomic Force Microscopy. <i>Langmuir</i> , 2002 , 18, 8223-8230	4	23
230	In Situ Modification of Three-Dimensional Polyphenylene Dendrimer-Templated CuO Rice-Shaped Architectures with Electron Beam Irradiation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13465-13470	3.8	22
229	[Ru(TAP)3]2+-photosensitized DNA cleavage studied by atomic force microscopy and gel electrophoresis: a comparative study. <i>Chemistry - A European Journal</i> , 2006 , 12, 758-62	4.8	22
228	Conformational characterization from modulated single molecule fluorescence intensity traces. <i>Chemical Physics Letters</i> , 2002 , 362, 534-540	2.5	22
227	Free Energy Landscape and Dynamics of Supercoiled DNA by High-Speed Atomic Force Microscopy. <i>ACS Nano</i> , 2018 , 12, 11907-11916	16.7	22
226	Switching of single-molecule magnetic properties of TbIII -porphyrin double-decker complexes and observation of their supramolecular structures on a carbon surface. <i>Chemistry - A European Journal</i> , 2014 , 20, 11362-9	4.8	21
225	Layer-by-Layer synthesis and tunable optical properties of hybrid magneticplasmonic nanocomposites using short bifunctional molecular linkers. <i>Materials Letters</i> , 2014 , 118, 99-102	3.3	21
224	Identification of oligo(p-phenylene vinylene)-naphthalene diimide heterocomplexes by scanning tunneling microscopy and spectroscopy at the liquid-solid interface. <i>Chemical Communications</i> , 2008 , 5496-8	5.8	21
223	Delivery of antisense oligonucleotides using cholesterol-modified sense dendrimers and cationic lipids. <i>Bioconjugate Chemistry</i> , 2005 , 16, 827-36	6.3	21
222	Chiral Polymorphism: A Scanning Tunneling Microscopy Study. <i>Langmuir</i> , 2000 , 16, 9887-9894	4	21
221	Adsorption of Aldehydes on a Graphite Substrate: Combined Thermodynamic Study of C6©113 Homologues with a Structural and Dynamical Study of Dodecanal. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6027-6034	3.8	20
220	On the use of dynamic fluorescence measurements to determine equilibrium and kinetic constants. The inclusion of pyrene in Ecyclodextrin cavities. <i>Chemical Physics Letters</i> , 1996 , 249, 46-52	2.5	20
219	Steric and Electronic Effects of Electrochemically Generated Aryl Radicals on Grafting of the Graphite Surface. <i>Langmuir</i> , 2019 , 35, 2089-2098	4	20
218	Efficient screening of 2D molecular polymorphs at the solution-solid interface. <i>Nanoscale</i> , 2015 , 7, 5344	-7 .7	19
217	Real-Time Molecular-Scale Imaging of Dynamic Network Switching between Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5964-5968	16.4	19

(2016-2013)

216	Diazadithia[7]helicenes: Synthetic Exploration, Solid-State Structure, and Properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 12077-85	4.8	19	
215	Self-assembly behavior of alkylated isophthalic acids revisited: concentration in control and guest-induced phase transformation. <i>Langmuir</i> , 2014 , 30, 15206-11	4	19	
214	Structural polymorphism in self-assembled networks of a triphenylene based macrocycle. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12495-503	3.6	19	
213	Molecular organization of azobenzene derivatives at the liquid/graphite interface observed with scanning tunneling microscopy. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1997 , 15, 1419		19	
212	Synthesis and adsorption of shape-persistent macrocycles containing polycyclic aromatic hydrocarbons in the rigid framework. <i>Langmuir</i> , 2007 , 23, 1281-6	4	19	
211	Polar Order in Spin-Coated Films of a Regioregular Chiral Poly[(S)-3-(3,7-dimethyloctyl)thiophene]. <i>Advanced Materials</i> , 2005 , 17, 708-712	24	19	
210	Probing Carboxylic Acid Groups in Replaced and Mixed Self-Assembled Monolayers by Individual Ionized Dendrimer Molecules: An Atomic Force Microscopy Study. <i>Langmuir</i> , 2002 , 18, 1801-1810	4	19	
209	Nanometer space resolved photochemistry. <i>Chemical Communications</i> , 2001 , 585-592	5.8	19	
208	Direct visualization of microphase separation in block copoly(3-alkylthiophene)s. <i>RSC Advances</i> , 2015 , 5, 8721-8726	3.7	18	
207	Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe. <i>Nanoscale</i> , 2018 , 10, 7556-7565	7.7	18	
206	Assessing the role of chirality in the formation of rosette-like supramolecular assemblies on surfaces. <i>Chemical Communications</i> , 2011 , 47, 10924-6	5.8	18	
205	Self-assembly of supramolecular wires and cross-junctions and efficient electron tunnelling across them. <i>Chemical Science</i> , 2011 , 2, 1945	9.4	18	
204	Synthesis, separation, and isomer-dependent packing in two dimensionsdetected by scanning tunnelling microscopyof a TTF derivative. <i>Chemical Communications</i> , 2003 , 906-7	5.8	18	
203	Synthesis and optical properties of polyphenylene dendrimers based on perylenes. <i>Journal of Organic Chemistry</i> , 2003 , 68, 9802-8	4.2	18	
202	Graphite and Graphene Fairy Circles: A Bottom-Up Approach for the Formation of Nanocorrals. <i>ACS Nano</i> , 2019 , 13, 5559-5571	16.7	17	
201	Structural Insights into the Mechanism of Chiral Recognition and Chirality Transfer in Host © uest Assemblies at the LiquidBolid Interface. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 8228-8235	3.8	17	
200	One-pot functionalization of cellulose nanocrystals with various cationic groups. <i>Cellulose</i> , 2016 , 23, 3569-3576	5.5	17	
199	The impact of grafted surface defects and their controlled removal on supramolecular self-assembly. <i>Chemical Science</i> , 2016 , 7, 7028-7033	9.4	17	

198	Influence of the regioregularity on the chiral supramolecular organization of poly(3-alkylsulfanylthiophene)s. <i>RSC Advances</i> , 2013 , 3, 3342	3.7	17
197	Torands Revisited: Metal Sequestration and Self-Assembly of Cyclo-2,9-tris-1,10-phenanthroline Hexaaza Macrocycles. <i>Chemistry - A European Journal</i> , 2015 , 21, 8426-34	4.8	17
196	Formation of a non-crystalline bimolecular porous network at a liquid/solid interface. <i>Chemical Communications</i> , 2011 , 47, 11459-61	5.8	17
195	Unusual two-dimensional multicomponent self-assembly probed by scanning tunneling microscopy. <i>ChemPhysChem</i> , 2002 , 3, 966-9	3.2	17
194	Biasing Enantiomorph Formation via Geometric Confinement: Nanocorrals for Chiral Induction at the Liquid-Solid Interface. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11565-11568	16.4	17
193	Insights into dynamic covalent chemistry at surfaces. <i>Chemical Communications</i> , 2015 , 51, 16338-41	5.8	16
192	Potential-driven molecular tiling of a charged polycyclic aromatic compound. <i>Chemical Communications</i> , 2014 , 50, 10376-8	5.8	16
191	Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy. <i>Nanoscale</i> , 2014 , 6, 4611-9	7.7	16
190	Chiral occlusion in two-dimensional binary supramolecular networks studied by the Monte Carlo method. <i>CrystEngComm</i> , 2011 , 13, 5542	3.3	16
189	Behavior of binary alcohol mixtures adsorbed on graphite using calorimetry and scanning tunneling microscopy. <i>Langmuir</i> , 2008 , 24, 2501-8	4	16
188	Odd E ven Effects in Chiral Phase Transition at the Liquid/Solid Interface. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 10430-10438	3.8	15
187	Twisted Aromatic Frameworks: Readily Exfoliable and Solution-Processable Two-Dimensional Conjugated Microporous Polymers. <i>Angewandte Chemie</i> , 2017 , 129, 7050-7055	3.6	15
186	Controlled Synthesis of a Helical Conjugated Polythiophene. <i>Macromolecules</i> , 2018 , 51, 3504-3514	5.5	15
185	Liquid Nickel Salts: Synthesis, Crystal Structure Determination, and Electrochemical Synthesis of Nickel Nanoparticles. <i>Chemistry - A European Journal</i> , 2016 , 22, 1010-20	4.8	15
184	Square tiling by square macrocycles at the liquid/solid interface: co-crystallisation with one- or two-dimensional order. <i>Chemistry - A European Journal</i> , 2015 , 21, 6806-16	4.8	15
183	Ordering of Molecules with Econjugated Triangular Core by Switching Hydrogen Bonding and van der Waals Interactions. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 17082-17088	3.8	15
182	Synthesis and properties of a triphenyleneButadiynylene macrocycle. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1404-1415		15
181	Rastertunnelmikroskopische Beobachtung der Monoschicht eines Diacetylenderivats auf Graphit vor und nach der Polymerisation mit submolekularer Aufl\(\bar{\bar{u}}\) ung. Angewandte Chemie, 1997 , 109, 2713-2	735 ⁶	15

180	Emerging Solvent-Induced Homochirality by the Confinement of Achiral Molecules Against a Solid Surface. <i>Angewandte Chemie</i> , 2008 , 120, 5075-5079	3.6	15	
179	Remote excitation-tip-enhanced Raman scattering microscopy using silver nanowire. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 08NB03	1.4	15	
178	Reversing the Handedness of Self-Assembled Porous Molecular Networks through the Number of Identical Chiral Centres. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7733-7738	16.4	14	
177	Porous Self-Assembled Molecular Networks as Templates for Chiral-Position-Controlled Chemical Functionalization of Graphitic Surfaces. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7699-7708	16.4	14	
176	Tip-enhanced Raman scattering microscopy: Recent advance in tip production. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 08NA02	1.4	14	
175	Harnessing by a diacetylene unit: a molecular design for porous two-dimensional network formation at the liquid/solid interface. <i>Chemical Communications</i> , 2014 , 50, 2831-3	5.8	14	
174	Efficient molecular recognition based on nonspecific van der Waals interaction at the solid/liquid interface. <i>Chemical Communications</i> , 2014 , 50, 11946-9	5.8	14	
173	Molecularly Defined Shape-Persistent 2D Oligomers: The Covalent-Template Approach to Molecular Spoked Wheels. <i>Angewandte Chemie</i> , 2007 , 119, 6926-6930	3.6	14	
172	Femtosecond Dynamics of Norrish Type-II Reactions: Nonconcerted Hydrogen-Transfer and Diradical Intermediacy. <i>Angewandte Chemie</i> , 2000 , 112, 266-269	3.6	14	
171	Fluorescence depolarisation from 2,5,8,11-tetra-t-butylperylene globally analysed upon excitation in S1 and Sn. <i>Chemical Physics Letters</i> , 1995 , 233, 538-544	2.5	14	
170	Complex Chiral Induction Processes at the Solution/Solid Interface. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 17444-17453	3.8	14	
169	Covalent Functionalization of Carbon Surfaces: Diaryliodonium versus Aryldiazonium Chemistry. <i>Chemistry of Materials</i> , 2020 , 32, 5246-5255	9.6	13	
168	Monolayer self-assembly at liquidBolid interfaces: chirality and electronic properties of molecules at surfaces. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 184003	1.8	13	
167	Supramolecular chemistry at the liquid/solid interface probed by scanning tunnelling microscopy. <i>International Journal of Nanotechnology</i> , 2006 , 3, 462	1.5	13	
166	Emission properties of a highly fluorescent pyrene dye in solution and in the liquid state. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2006 , 178, 251-257	4.7	13	
165	Self-limiting covalent modification of carbon surfaces: diazonium chemistry with a twist. <i>Nanoscale</i> , 2020 , 12, 18782-18789	7.7	13	
164	Area-selective passivation of sp carbon surfaces by supramolecular self-assembly. <i>Nanoscale</i> , 2017 , 9, 5188-5193	7.7	12	
163	Nanoconfined self-assembly on a grafted graphitic surface under electrochemical control. <i>Nanoscale</i> , 2017 , 9, 362-368	7.7	12	

Graphene Meets Ionic Liquids: Fermi Level Engineering via Electrostatic Forces. ACS Nano, 2019, 13, 351245,2112

161	Impact of covalent functionalization by diazonium chemistry on the electronic properties of graphene on SiC. <i>Nanoscale</i> , 2020 , 12, 9032-9037	7:7	12
160	Supramolecular Loop Stitches of Discrete Block Molecules on Graphite: Tunable Hydrophobicity by Naphthalenediimide End-Capped Oligodimethylsiloxane. <i>Chemistry of Materials</i> , 2018 , 30, 3372-3378	9.6	12
159	4,5-Pyrenocyaninejust another phthalocyanine? A STM and 2D WAXS study. <i>Chemistry - A European Journal</i> , 2012 , 18, 3264-76	4.8	12
158	Self-Assembly of a Functionalized Alkylated Isophthalic Acid at the Au(111)/Electrolyte Interface: Structure and Dynamics. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 11567-11574	3.8	12
157	Hexaterphenylyl- und Hexaquaterphenylylbenzol: das Verhalten von Chromophoren und Elektrophoren auf engem Raum. <i>Angewandte Chemie</i> , 1996 , 108, 830-833	3.6	12
156	Phase selectivity triggered by nanoconfinement: the impact of corral dimensions. <i>Chemical Communications</i> , 2019 , 55, 2226-2229	5.8	11
155	Iodide mediated reductive decomposition of diazonium salts: towards mild and efficient covalent functionalization of surface-supported graphene. <i>Nanoscale</i> , 2020 , 12, 11916-11926	7.7	11
154	Synthesis of Triply Fused Porphyrin-Nanographene Conjugates. <i>Angewandte Chemie</i> , 2018 , 130, 11403-	1 ქ.€ 07	11
153	STM visualisation of counterions and the effect of charges on self-assembled monolayers of macrocycles. <i>Beilstein Journal of Nanotechnology</i> , 2011 , 2, 674-80	3	11
152	Guiding the self-assembly of a second-generation polyphenylene dendrimer into well-defined patterns. <i>Small</i> , 2008 , 4, 1160-7	11	11
151	Surface-confined activation of ultra low-k dielectrics in CO2 plasma. <i>Applied Physics Letters</i> , 2016 , 108, 262902	3.4	11
150	Synthesis, Photophysical Characterization, and Self-Assembly of Hexa-peri-hexabenzocoronene/Benzothiadiazole Donor-Acceptor Structure. <i>ChemPlusChem</i> , 2017 , 82, 1030-1033	2.8	10
149	Hierarchical self-assembly of enantiopure and racemic helicenes at the liquid/solid interface: from 2D to 3D. <i>Nanoscale</i> , 2017 , 9, 18075-18080	7.7	10
148	Alkyl chain length effects on double-deck assembly at a liquid/solid interface. <i>Nanoscale</i> , 2018 , 10, 1499	9 3-,1 50	02 0
147	The impact of grafted surface defects on the on-surface Schiff-base chemistry at the solid-liquid interface. <i>Chemical Communications</i> , 2018 , 54, 9905-9908	5.8	10
146	Doping of graphene for the application in nano-interconnect. <i>Microelectronic Engineering</i> , 2017 , 167, 42-46	2.5	10
145	Dynamics in self-assembled organic monolayers at the liquid/solid interface revealed by scanning tunneling microscopy. <i>Chimia</i> , 2012 , 66, 38-43	1.3	10

144	STM, STS and Bias-Dependent Imaging on Organic Monolayers at the Solid-Liquid Interface. <i>Topics in Current Chemistry</i> , 2008 , 285, 269-312		10
143	Two-Dimensional Nanoporous Networks Formed by Liquid-to-Solid Transfer of Hydrogen-Bonded Macrocycles Built from DNA Bases. <i>Angewandte Chemie</i> , 2016 , 128, 669-673	3.6	10
142	High-throughput AFM analysis reveals unwrapping pathways of H3 and CENP-A nucleosomes. <i>Nanoscale</i> , 2021 , 13, 5435-5447	7.7	10
141	How Does Chemisorption Impact Physisorption? Molecular View of Defect Incorporation and Perturbation of Two-Dimensional Self-Assembly. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 24046-2405	5 4 .8	10
140	Effect of different oxide and hybrid precursors on MOF-CVD of ZIF-8 films. <i>Dalton Transactions</i> , 2021 , 50, 6784-6788	4.3	10
139	Reversible Anion-Driven Switching of an Organic 2D Crystal at a Solid-Liquid Interface. <i>Small</i> , 2017 , 13, 1702379	11	9
138	Adaptive Self-Assembly in 2D Nanoconfined Spaces: Dealing with Geometric Frustration. <i>Chemistry of Materials</i> , 2019 , 31, 6779-6786	9.6	9
137	Self-Assembled Polystyrene Beads for Templated Covalent Functionalization of Graphitic Substrates Using Diazonium Chemistry. <i>ACS Applied Materials & Diazonium Chemistry</i> . <i>ACS Applied Materials & Diazonium Chemistry</i> .	9.5	9
136	Synthesis and supramolecular organization of chiral poly(thiophene) that agnetite hybrid nanoparticles. <i>Polymer Chemistry</i> , 2018 , 9, 3029-3036	4.9	9
135	One-Step Covalent Immobilization of Ecyclodextrin on sp2 Carbon Surfaces for Selective Trace Amount Probing of Guests. <i>Advanced Functional Materials</i> , 2019 , 29, 1901488	15.6	9
134	Affecting surface chirality via multicomponent adsorption of chiral and achiral molecules. <i>Chemical Communications</i> , 2014 , 50, 11903-6	5.8	9
133	Organization of the enantiomeric and racemic forms of an amphiphilic resorcinol derivative at the air-water and graphite-1-phenyloctane interfaces. <i>Chirality</i> , 2012 , 24, 155-66	2.1	9
132	A multivalent hexapod having 24 stereogenic centers: chirality and conformational dynamics in homochiral and heterochiral systems. <i>CrystEngComm</i> , 2011 , 13, 5584	3.3	9
131	Aggregation kinetics of macrocycles detected by magnetic birefringence. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14134-5	16.4	9
130	Directing the assembly of charged organic molecules by a hydrophilic-hydrophobic nanostructured monolayer at electrified interfaces. <i>Nano Letters</i> , 2008 , 8, 1163-8	11.5	9
129	Anatomy of On-Surface Synthesized Boroxine Two-Dimensional Polymers. <i>ACS Nano</i> , 2020 , 14, 2354-23	65 6.7	9
128	Multicomponent Covalent Chemical Patterning of Graphene. ACS Nano, 2021, 15, 10618-10627	16.7	9
127	Molecular dopant determines the structure of a physisorbed self-assembled molecular network. <i>Chemical Communications</i> , 2021 , 57, 1454-1457	5.8	9

126	Doping Graphene with Substitutional Mn. ACS Nano, 2021, 15, 5449-5458	16.7	9
125	Unidirectional supramolecular self-assembly inside nanocorrals via in situ STM nanoshaving. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 27482-27489	3.6	9
124	Controlled Synthesis and Supramolecular Organization of Conjugated Star-Shaped Polymers. <i>Macromolecules</i> , 2018 , 51, 8689-8697	5.5	9
123	Hydrogen-Bonded Donor-Acceptor Arrays at the Solution-Graphite Interface. <i>Chemistry - A European Journal</i> , 2018 , 24, 12071-12077	4.8	8
122	Tailoring Surface-Confined Nanopores with Photoresponsive Groups. <i>Angewandte Chemie</i> , 2013 , 125, 8531-8534	3.6	8
121	Complexation of lipofectamine and cholesterol-modified DNA sequences studied by single-molecule fluorescence techniques. <i>Biomacromolecules</i> , 2007 , 8, 3382-92	6.9	8
120	Pulsed-Force-Mode AFM Studies of Polyphenylene Dendrimers on Self-Assembled Monolayers. Journal of Physical Chemistry C, 2007 , 111, 8142-8144	3.8	8
119	In Situ Investigation of Dynamical Nanophase Separation. <i>Langmuir</i> , 2003 , 19, 8256-8261	4	8
118	Formation and manipulation of supramolecular structures of oligo(p-phenylenevinylene) terminated poly(propylene imine) dendrimers. <i>Chemical Communications</i> , 2002 , 1264-5	5.8	8
117	On the Thermal Stability of Aryl Groups Chemisorbed on Graphite. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 1980-1990	3.8	8
116	2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement. <i>Chemical Society Reviews</i> , 2021 , 50, 5884-5897	58.5	8
115	Covalent functionalization of molybdenum disulfide by chemically activated diazonium salts. <i>Nanoscale</i> , 2021 , 13, 2972-2981	7.7	8
114	Design of efficient sergeant molecules for chiral induction in nano-porous supramolecular assemblies. <i>RSC Advances</i> , 2015 , 5, 6642-6646	3.7	7
113	Interface Chemistry of Graphene/Cu Grafted By 3,4,5-Tri-Methoxyphenyl. <i>Scientific Reports</i> , 2020 , 10, 4114	4.9	7
112	Transformation from helical to layered supramolecular organization of asymmetric perylene diimides via multiple intermolecular hydrogen bonding. <i>Chemical Science</i> , 2020 , 11, 4960-4968	9.4	7
111	Electrostatically Driven Guest Binding in a Self-Assembled Porous Network at the Liquid/Solid Interface. <i>Langmuir</i> , 2018 , 34, 6036-6045	4	7
110	Surface Plasmon-Assisted Site-Specific Cutting of Silver Nanowires Using Femtosecond Laser. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600014	6.8	7
109	Preferred Formation of Minority Concomitant Polymorphs in 2D Self-Assembly under Lateral Nanoconfinement. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12964-12968	16.4	7

108	Artificial #propeller protein-based hydrolases. Chemical Communications, 2019, 55, 8880-8883	5.8	7
107	Alkoxy Chain Number Effect on Self-Assembly of a Trigonal Molecule at the Liquid/Solid Interface. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 27020-27029	3.8	7
106	Hierarchical growth of curved organic nanowires upon evaporation induced self-assembly. <i>Chemical Communications</i> , 2014 , 50, 13216-9	5.8	7
105	Transfer of chiral information from a chiral solvent to a two-dimensional network. <i>Faraday Discussions</i> , 2017 , 204, 215-231	3.6	7
104	Tunable n- and p-type doping of single-layer graphene by engineering its interaction with the SiO2 support. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 53-55	2.5	7
103	2D analogues of the inverted hexagonal phase self-assembled from 4,6-dialkoxylated isophthalic acids at solid-liquid interfaces. <i>Nanoscale</i> , 2010 , 2, 1773-80	7.7	7
102	Morphology of protein polymer hybrid films studied by atomic force microscopy and scanning confocal fluorescence microscopy. <i>Thin Solid Films</i> , 2003 , 443, 124-135	2.2	7
101	Steady-state and time-resolved fluorescence anisotropy of 2,9-di-n-pentyl-5,6,11,12-tetraazo-5,6,11,12-tetrahydrocoronene-5,6,11,12-tetracarboxy-bis-n-heptade <i>Chemical Physics Letters</i> , 1996 , 248, 13-19	cycljmi	id ç .
100	Epitaxial growth of light-responsive azobenzene molecular crystal actuators on oriented polyethylene films. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 694-699	7.1	7
99	Carbocatalysis with pristine graphite: on-surface nanochemistry assists solution-based catalysis. <i>Chemical Society Reviews</i> , 2021 , 50, 2280-2296	58.5	7
98	Tailoring atomic layer growth at the liquid-metal interface. <i>Nature Communications</i> , 2018 , 9, 4889	17.4	7
97	Comparative in vitro performances of bare Nitinol surfaces. <i>Bio-Medical Materials and Engineering</i> , 2008 , 18, 1-14	1	7
96	Observing polymerization in 2D dynamic covalent polymers <i>Nature</i> , 2022 , 603, 835-840	50.4	7
95	Synthesis and helical supramolecular organization of discotic liquid crystalline dibenzo[hi,st]ovalene. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12898-12906	7.1	6
94	On the stability of surface-confined nanoporous molecular networks. <i>Journal of Chemical Physics</i> , 2015 , 142, 101932	3.9	6
93	Controlled Fabrication of Optical Signal Input/Output Sites on Plasmonic Nanowires. <i>Nano Letters</i> , 2020 , 20, 2460-2467	11.5	6
92	Orthogonal Probing of Single-Molecule Heterogeneity by Correlative Fluorescence and Force Microscopy. <i>ACS Nano</i> , 2018 , 12, 168-177	16.7	6
91	Construction of cyclic arrays of Zn-porphyrin units and their guest binding at the solid-liquid interface. <i>Chemical Communications</i> , 2016 , 52, 14419-14422	5.8	6

90	Manifestations of non-planar adsorption geometries of lead pyrenocyanine at the liquid-solid interface. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2497-505	4.5	6
89	Highly controllable direct femtosecond laser writing of gold nanostructures on titanium dioxide surfaces. <i>Nanoscale</i> , 2017 , 9, 13025-13033	7.7	6
88	Alkoxylated dehydrobenzo[12]annulene on Au(111): from single molecules to quantum dot molecular networks. <i>Chemical Communications</i> , 2015 , 51, 10917-20	5.8	6
87	Stuffing-enabled surface confinement of silanes used as sealing agents on CF4 plasma-exposed 2.0 p-OSG films. <i>Microelectronic Engineering</i> , 2015 , 137, 70-74	2.5	6
86	Preprogrammed 2D folding of conformationally flexible oligoamides: foldamers with multiple turn elements. <i>ACS Nano</i> , 2012 , 6, 10684-98	16.7	6
85	Pasteurian Segregation on a Surface Imaged In Situ at the Molecular Level. <i>Angewandte Chemie</i> , 2012 , 124, 12147-12151	3.6	6
84	Femtosecond dynamics of hydrogen elimination: benzene formation from cyclohexadiene. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 877-883	3.6	6
83	Two-dimensional perovskites with alternating cations in the interlayer space for stable light-emitting diodes. <i>Nanophotonics</i> , 2021 , 10, 2145-2156	6.3	6
82	Stereospecific Epitaxial Growth of Bilayered Porous Molecular Networks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8662-8671	16.4	6
81	Nucleation Mechanisms of Self-Assembled Physisorbed Monolayers on Graphite. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 17510-17520	3.8	5
80	Trapping a pentagonal molecule in a self-assembled molecular network: an alkoxylated isosceles triangular molecule does the job. <i>Chemical Communications</i> , 2020 , 56, 5401-5404	5.8	5
79	Hydrogen-Bonded Siloxane Liquid Crystals for Hybrid Nanomaterials. <i>Helvetica Chimica Acta</i> , 2018 , 101, e1800130	2	5
78	Controlling the Bioreceptor Spatial Distribution at the Nanoscale for Single Molecule Counting in Microwell Arrays. <i>ACS Sensors</i> , 2019 , 4, 2327-2335	9.2	5
77	Zusammenrliken und Stapeln: von atmenden Poren zu dreidimensionaler ionischer Selbstorganisation unter elektrochemischer Kontrolle. <i>Angewandte Chemie</i> , 2014 , 126, 13165-13168	3.6	5
76	Study of hole mobility in poly(N-vinylcarbazole) films doped with CdSe/ZnS quantum dots encapsulated by 11-(N-carbazolyl) undecanoic acid (C11). <i>Journal of Applied Physics</i> , 2013 , 114, 173704	2.5	5
75	Chain relaxation dynamics of DNA adsorbing at a solid-liquid interface. <i>Nanoscale</i> , 2013 , 5, 2264-8	7.7	5
74	Direct observation of the influence of chirality on the microstructure of regioregular poly(3-alkylthiophene)s at the liquid/solid interface. <i>Chemical Communications</i> , 2016 , 53, 153-156	5.8	5
73	Optimization and upscaling of spin coating with organosilane monolayers for low-k pore sealing. <i>Microelectronic Engineering</i> , 2017 , 167, 32-36	2.5	5

(2020-2006)

72	Scanning tunnelling microscopy of a foldamer prototype at the liquid/solid interface: water/Au(111) versus 1-octanol/graphite. <i>New Journal of Chemistry</i> , 2006 , 30, 1420	3.6	5
71	Label-free visualization of heterogeneities and defects in metal-organic frameworks using nonlinear optics. <i>Chemical Communications</i> , 2020 , 56, 13331-13334	5.8	5
70	Breakdown of Universal Scaling for Nanometer-Sized Bubbles in Graphene. <i>Nano Letters</i> , 2021 , 21, 8103	3-8-1-190	5
69	Chirality in porous self-assembled monolayer networks at liquid/solid interfaces: induction, reversion, recognition and transfer. <i>Chemical Communications</i> , 2021 , 57, 962-977	5.8	5
68	Chiral non-periodic surface-confined molecular nanopatterns revealed by scanning tunnelling microscopy. <i>CrystEngComm</i> , 2011 , 13, 5578	3.3	4
67	⊞Terthiophene in non-ionic Triton X-100 micelles: biphotonic creation of its radical cation. <i>Chemical Physics Letters</i> , 1998 , 286, 452-456	2.5	4
66	On the interpretation of excited-state decay data for the determination of the equilibrium constants in compartmentalized systems. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 2433		4
65	Coplanar versus Noncoplanar Carboxyl Groups: The Influence of Sterically Enforced Noncoplanarity on the 2D Mixing Behavior of Benzene Tricarboxylic Acids. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 24874-24882	3.8	4
64	Detection and Stabilization of a Previously Unknown Two-Dimensional (Pseudo)polymorph using Lateral Nanoconfinement. <i>Journal of the American Chemical Society</i> , 2021 , 143, 11080-11087	16.4	4
63	Controlled graphite surface functionalization using contact and remote photocatalytic oxidation. <i>Carbon</i> , 2021 , 172, 637-646	10.4	4
62	Ambient Bistable Single Dipole Switching in a Molecular Monolayer. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14049-14053	16.4	3
61	Coadsorption of TbIII P orphyrin Double-decker Single-molecule Magnets in a Porous Molecular Network: Toward Controlled Alignment of Single-molecule Magnets on a Carbon Surface. <i>Chemistry Letters</i> , 2016 , 45, 286-288	1.7	3
60	Scanning probe microscopy induced surface modifications of the topological insulator BiTe in different environments. <i>Nanotechnology</i> , 2017 , 28, 335706	3.4	3
59	Immersion transients reveal potential of zero charge of nanoparticle films. <i>Electrochemistry Communications</i> , 2012 , 25, 128-131	5.1	3
58	On the transfer of cooperative self-assembled Econjugated fibrils to a gold substrate. <i>Chemical Communications</i> , 2011 , 47, 9333-5	5.8	3
57	Cover Picture: Two-Dimensional Crystal Engineering: A Four-Component Architecture at a LiquidBolid Interface (Angew. Chem. Int. Ed. 40/2009). <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7267-7267	16.4	3
56	Double Lamellar Morphologies and Odd E ven Effects in Two- and Three-Dimensional N,N?-bis(n-alkyl)-naphthalenediimide Materials. <i>Chemistry of Materials</i> , 2021 , 33, 8800-8811	9.6	3
55	Hierarchical two-dimensional molecular assembly through dynamic combination of conformational states at the liquid/solid interface. <i>Chemical Science</i> , 2020 , 11, 9254-9261	9.4	3

54	Synthesis, Properties, and Two-Dimensional Adsorption Characteristics of [6]Hexahelicene-7-carboxylic acid. <i>Chemistry - A European Journal</i> , 2016 , 22, 14633-9	4.8	3
53	Photo-induced electrodeposition of metallic nanostructures on graphene. <i>Nanoscale</i> , 2020 , 12, 11063-1	1,0,69	3
52	Chirality from scratch: enantioselective adsorption in geometrically controlled lateral nanoconfinement. <i>Chemical Communications</i> , 2021 , 57, 61-64	5.8	3
51	"Concentration-in-Control" self-assembly concept at the liquid-solid interface challenged. <i>Chemical Science</i> , 2021 , 12, 13167-13176	9.4	3
50	Computational insight into the origin of unexpected contrast in chiral markers as revealed by STM. <i>Nanoscale</i> , 2018 , 10, 1680-1694	7.7	3
49	Mechanism of Ostwald Ripening in 2D Physisorbed Assemblies at Molecular Time and Length Scale by Molecular Dynamics Simulations. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 24380-24385	3.8	3
48	Doping of graphene via adlayer formation of electrochemically reduced dibenzyl viologen. <i>Journal of Materials Chemistry C</i> ,	7.1	3
47	Expression of Chirality in Physisorbed Monolayers Observed by Scanning Tunneling Microscopy215-245		3
46	Supramolecular effects in self-assembled monolayers: general discussion. <i>Faraday Discussions</i> , 2017 , 204, 123-158	3.6	2
45	Supramolecular systems at liquid-solid interfaces: general discussion. <i>Faraday Discussions</i> , 2017 , 204, 271-295	3.6	2
44	Triplet harvesting in poly(9-vinylcarbazole) and poly(9-(2,3-epoxypropyl)carbazole) doped with CdSe/ZnS quantum dots encapsulated with 16-(N-carbazolyl) hexadecanoic acid ligands. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2014 , 52, 539-551	2.6	2
43	Switching of Single-Molecule Magnetic Properties of TbIII B orphyrin Double-Decker Complexes and Observation of Their Supramolecular Structures on a Carbon Surface. <i>Chemistry - A European Journal</i> , 2014 , 20, 11237-11237	4.8	2
42	Sealing of low-k dielectric (k=2.0) with self-assembled monolayers (SAMs) for the atomic layer deposition (ALD) of TiN. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1559, 1		2
41	Molecular patterning at a liquid/solid interface: the foldamer approach. <i>Langmuir</i> , 2011 , 27, 13598-605	4	2
40	Titelbild: Two-Dimensional Crystal Engineering: A Four-Component Architecture at a LiquidBolid Interface (Angew. Chem. 40/2009). <i>Angewandte Chemie</i> , 2009 , 121, 7403-7403	3.6	2
39	Single molecule detection of macromolecules. <i>Macromolecular Symposia</i> , 2002 , 178, 1-10	0.8	2
38	Supramolecular Control of Two-Dimensional Phase Behavior. <i>Chemistry - A European Journal</i> , 2003 , 9, 1663-1663	4.8	2
37	High-throughput AFM analysis reveals unwrapping pathways of H3 and CENP-A nucleosomes		2

36	2D self-assembly and electronic characterization of oxygen-boron-oxygen-doped chiral graphene nanoribbons. <i>Chemical Communications</i> , 2021 , 57, 6031-6034	5.8	2
35	Chiral Adsorption Conformations of Long-Chain n-Alkanes Induced by Lattice Mismatch. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 1557-1563	3.8	2
34	Facilitating Tip-Enhanced Raman Scattering on Dielectric Substrates via Electrical Cutting of Silver Nanowire Probes. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 7117-7122	6.4	2
33	An Approach to the Synthesis of a Two-Dimensional Polymer Using a Preorganized Host-Guest Network by Self-Assembly at the Liquid/Solid Interface. <i>ChemNanoMat</i> , 2020 , 6, 550-559	3.5	2
32	From 2D to 3D: Bridging Self-Assembled Monolayers to a Substrate-Induced Polymorph in a Molecular Semiconductor. <i>Chemistry of Materials</i> , 2022 , 34, 2238-2248	9.6	2
31	Surface Engineering of Graphite and Graphene by Viologen Self-Assembling: From Global to Local Architectures. <i>Journal of Physical Chemistry C</i> ,	3.8	2
30	Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	2
29	Reversing the Handedness of Self-Assembled Porous Molecular Networks through the Number of Identical Chiral Centres. <i>Angewandte Chemie</i> , 2019 , 131, 7815-7820	3.6	1
28	Ambient Bistable Single Dipole Switching in a Molecular Monolayer. <i>Angewandte Chemie</i> , 2020 , 132, 14153-14157	3.6	1
27	The Effect of Ar/H2 Plasma Pretreatments on Porous K=2.0 Dielectrics for Pore Sealing by Self-Assembled Monolayers Deposition. <i>Solid State Phenomena</i> , 2012 , 195, 146-149	0.4	1
26	Organic Femtochemistry: Diradicals, Theory and Experiments97-112		1
25	Supermicroscopy: AFM, SNOM, and SXM 2004 , 1394-1400		1
24	Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers. <i>Beilstein Journal of Nanotechnology</i> , 2020 , 11, 1291-1302	3	1
23	Steven De Feyter. Angewandte Chemie - International Edition, 2016 , 55, 32-32	16.4	1
22	Self-sealing thermoplastic fluoroelastomer enables rapid fabrication of modular microreactors. <i>Nano Select</i> , 2021 , 2, 1385-1402	3.1	1
21	AFM Nanoshaving of Covalently Modified Graphite for Studying Molecular Self-Assembly under Lateral Nanoconfinement. <i>Journal of Physical Chemistry C</i> ,	3.8	1
20	Correlative Atomic Force and Single-Molecule Fluorescence Microscopy of Nucleoprotein Complexes. <i>Methods in Molecular Biology</i> , 2018 , 1814, 339-359	1.4	O
19	Preferred Formation of Minority Concomitant Polymorphs in 2D Self-Assembly under Lateral Nanoconfinement. <i>Angewandte Chemie</i> , 2019 , 131, 13098-13102	3.6	O

18	Electrostatically Driven Guest Binding in Self-Assembled Molecular Network of Hexagonal Pyridine Macrocycle at the Liquid/Solid Interface: Symmetry Breaking Induced by Coadsorbed Solvent Molecules. <i>Langmuir</i> , 2019 , 35, 15051-15062	4	0
17	Dendritic nucleotides: interaction with an aliphatic acid monolayer. <i>Chemistry and Biodiversity</i> , 2008 , 5, 1675-82	2.5	O
16	Influence of Heterogeneity on the Chiral Expression of Star-Shaped Conjugated Polymers. <i>Macromolecules</i> , 2020 , 53, 9254-9263	5.5	0
15	MOLECULAR FUNCTIONALIZATION OF 2D MATERIALS. Surface Review and Letters, 2021 , 28, 2140002	1.1	Ο
14	Chirality at the Solution/Solid-State Interface 2016 , 257-284		0
13	A chemisorbed interfacial layer for seeding atomic layer deposition on graphite. <i>Nanoscale</i> , 2021 , 13, 12327-12341	7.7	О
12	Grafting Ink for Direct Writing: Solvation Activated Covalent Functionalization of Graphene <i>Advanced Science</i> , 2022 , e2105017	13.6	0
11	All-Optical and One-Color Rewritable Chemical Patterning on Pristine Graphene under Water <i>Journal of Physical Chemistry Letters</i> , 2022 , 3796-3803	6.4	O
10	Probing properties of molecule-based interface systems: general discussion and Discussion of the Concluding Remarks. <i>Faraday Discussions</i> , 2017 , 204, 503-530	3.6	
9	Preparing macromolecular systems on surfaces: general discussion. <i>Faraday Discussions</i> , 2017 , 204, 395	-4,168	
8	Reactivity on and of Graphene Layers: Scanning Probe Microscopy Reveals. <i>Advances in Atom and Single Molecule Machines</i> , 2018 , 35-61	Ο	
7	A Scanning Tunneling Microscopy Study on Surface-Supported Imine-Based Covalent Organic Frameworks: a New Design for Robust 2D Materials <i>Microscopy and Microanalysis</i> , 2019 , 25, 1478-1479	0.5	
6	Chirality in 2D 2006 , 1-35		
5	Frans De Schryver: forty years of photochemistry and photophysics. <i>ChemPhysChem</i> , 2005 , 6, 2215-7	3.2	
4	Supramolecular Chemistry at the Liquid/Solid Interface. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 901, 1		
3	Host © uest Chemistry in Surface-Confined Two-Dimensional Covalent Organic Frameworks 2018 , 285-2	94	
2	Complexity in Two-Dimensional Multicomponent Assembly 2022 , 43-79		
1	Covalent Modification of Graphite and Graphene Using Diazonium Chemistry. <i>Physical Chemistry in Action</i> , 2022 , 157-181		