## Steven De Feyter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2830626/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chemical Society Reviews, 2003, 32, 139-150.                                                                      | 18.7 | 981       |
| 2  | Molecular and Supramolecular Networks on Surfaces: From Twoâ€Dimensional Crystal Engineering to<br>Reactivity. Angewandte Chemie - International Edition, 2009, 48, 7298-7332.                          | 7.2  | 616       |
| 3  | Chemical vapour deposition of zeolitic imidazolate framework thinÂfilms. Nature Materials, 2016, 15, 304-310.                                                                                           | 13.3 | 528       |
| 4  | Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chemistry, 2014, 6, 126-132.                                                                           | 6.6  | 468       |
| 5  | Self-Assembly at the Liquid/Solid Interface:Â STM Reveals. Journal of Physical Chemistry B, 2005, 109, 4290-4302.                                                                                       | 1.2  | 455       |
| 6  | Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces. Chemical Society<br>Reviews, 2009, 38, 402-421.                                                                          | 18.7 | 444       |
| 7  | Two-Dimensional Porous Molecular Networks of Dehydrobenzo[12]annulene Derivatives via Alkyl<br>Chain Interdigitation. Journal of the American Chemical Society, 2006, 128, 16613-16625.                 | 6.6  | 343       |
| 8  | Conjugated Covalent Organic Frameworks via Michael Addition–Elimination. Journal of the American<br>Chemical Society, 2017, 139, 2421-2427.                                                             | 6.6  | 286       |
| 9  | Covalent Modification of Graphene and Graphite Using Diazonium Chemistry: Tunable Grafting and Nanomanipulation. ACS Nano, 2015, 9, 5520-5535.                                                          | 7.3  | 274       |
| 10 | One Building Block, Two Different Supramolecular Surfaceâ€Confined Patterns: Concentration in<br>Control at the Solid–Liquid Interface. Angewandte Chemie - International Edition, 2008, 47, 2964-2968. | 7.2  | 273       |
| 11 | Scanning Tunneling Microscopy:  A Unique Tool in the Study of Chirality, Dynamics, and Reactivity in Physisorbed Organic Monolayers. Accounts of Chemical Research, 2000, 33, 520-531.                  | 7.6  | 266       |
| 12 | Selfâ€Assembly of Bisurea Compounds in Organic Solvents and on Solid Substrates. Chemistry - A<br>European Journal, 1997, 3, 1238-1243.                                                                 | 1.7  | 235       |
| 13 | Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano, 2018, 12, 7445-7481.                                                                                    | 7.3  | 225       |
| 14 | Two-dimensional chirality at liquid–solid interfaces. Chemical Society Reviews, 2009, 38, 722.                                                                                                          | 18.7 | 215       |
| 15 | Solvent Controlled Self-Assembly at the Liquid-Solid Interface Revealed by STM. Journal of the American Chemical Society, 2006, 128, 317-325.                                                           | 6.6  | 200       |
| 16 | Ï€-Conjugated Oligo-(p-phenylenevinylene) Rosettes and Their Tubular Self-Assembly. Angewandte<br>Chemie - International Edition, 2004, 43, 74-78.                                                      | 7.2  | 197       |
| 17 | Frontiers of supramolecular chemistry at solid surfaces. Chemical Society Reviews, 2017, 46, 2520-2542.                                                                                                 | 18.7 | 196       |
| 18 | Exploring the Complexity of Supramolecular Interactions for Patterning at the Liquid–Solid<br>Interface. Accounts of Chemical Research, 2012, 45, 1309-1320.                                            | 7.6  | 193       |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Terrylenimides: New NIR Fluorescent Dyes. Chemistry - A European Journal, 1997, 3, 219-225.                                                                                                                                                                          | 1.7 | 185       |
| 20 | Structurally Defined Graphene Nanoribbons with High Lateral Extension. Journal of the American Chemical Society, 2012, 134, 18169-18172.                                                                                                                             | 6.6 | 185       |
| 21 | Structural Transformation of a Two-Dimensional Molecular Network in Response to Selective Guest<br>Inclusion. Angewandte Chemie - International Edition, 2007, 46, 2831-2834.                                                                                        | 7.2 | 182       |
| 22 | Temperature-Induced Structural Phase Transitions in a Two-Dimensional Self-Assembled Network.<br>Journal of the American Chemical Society, 2013, 135, 12068-12075.                                                                                                   | 6.6 | 180       |
| 23 | Control and induction of surface-confined homochiral porous molecular networks. Nature Chemistry, 2011, 3, 714-719.                                                                                                                                                  | 6.6 | 179       |
| 24 | Host–guest chemistry in two-dimensional supramolecular networks. Chemical Communications, 2016,<br>52, 11465-11487.                                                                                                                                                  | 2.2 | 179       |
| 25 | Light- and STM-Tip-Induced Formation of One-Dimensional and Two-Dimensional Organic<br>Nanostructuresâ€. Langmuir, 2003, 19, 6474-6482.                                                                                                                              | 1.6 | 172       |
| 26 | Supramolecular surface-confined architectures created by self-assembly of triangular<br>phenylene–ethynylene macrocycles via van der Waals interaction. Chemical Communications, 2010, 46,<br>8507.                                                                  | 2.2 | 170       |
| 27 | Programmable Hierarchical Three-Component 2D Assembly at a Liquidâ^'Solid Interface: Recognition, Selection, and Transformation. Nano Letters, 2008, 8, 2541-2546.                                                                                                   | 4.5 | 155       |
| 28 | Twoâ€Dimensional Crystal Engineering: A Fourâ€Component Architecture at a Liquid–Solid Interface.<br>Angewandte Chemie - International Edition, 2009, 48, 7353-7357.                                                                                                 | 7.2 | 154       |
| 29 | Molecular Clusters in Two-Dimensional Surface-Confined Nanoporous Molecular Networks:<br>Structure, Rigidity, and Dynamics. Journal of the American Chemical Society, 2008, 130, 7119-7129.                                                                          | 6.6 | 149       |
| 30 | Molecular Geometry Directed Kagomé and Honeycomb Networks: Toward Two-Dimensional Crystal<br>Engineering. Journal of the American Chemical Society, 2006, 128, 3502-3503.                                                                                            | 6.6 | 143       |
| 31 | Submolecularly Resolved Polymerization of Diacetylene Molecules on the Graphite Surface Observed with Scanning Tunneling Microscopy. Angewandte Chemie International Edition in English, 1997, 36, 2601-2603.                                                        | 4.4 | 142       |
| 32 | Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption. ACS Nano, 2014, 8, 11622-11630.                                                                                                                                  | 7.3 | 138       |
| 33 | Synthesis and Controlled Self-Assembly of Covalently Linked<br>Hexa- <i>peri</i> -hexabenzocoronene/Perylene Diimide Dyads as Models To Study Fundamental Energy<br>and Electron Transfer Processes. Journal of the American Chemical Society, 2012, 134, 5876-5886. | 6.6 | 134       |
| 34 | 2D Networks of Rhombic-Shaped Fused Dehydrobenzo[12]annulenes: Structural Variations under Concentration Control. Journal of the American Chemical Society, 2009, 131, 17583-17590.                                                                                  | 6.6 | 124       |
| 35 | Solvent Codeposition and Cisâ^'Trans Isomerization of Isophthalic Acid Derivatives Studied by STM. The<br>Journal of Physical Chemistry, 1996, 100, 19636-19641.                                                                                                     | 2.9 | 121       |
| 36 | Two-Dimensional Self-Assembly into Multicomponent Hydrogen-Bonded Nanostructures. Nano<br>Letters, 2005, 5, 77-81.                                                                                                                                                   | 4.5 | 115       |

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Solvent-Resistant Nanofiltration Membranes Based on Multilayered Polyelectrolyte Complexes.<br>Chemistry of Materials, 2008, 20, 3876-3883.                                                                                                                                    | 3.2  | 114       |
| 38 | Copper Benzene Tricarboxylate Metal–Organic Framework with Wide Permanent Mesopores Stabilized<br>by Keggin Polyoxometallate Ions. Journal of the American Chemical Society, 2012, 134, 10911-10919.                                                                           | 6.6  | 112       |
| 39 | Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nature<br>Materials, 2021, 20, 93-99.                                                                                                                                               | 13.3 | 112       |
| 40 | Fluorescence and Intramolecular Energy Transfer in Polyphenylene Dendrimers. Macromolecules, 2003, 36, 5918-5925.                                                                                                                                                              | 2.2  | 108       |
| 41 | Controlled Self-Assembly of <i>C</i> <sub>3</sub> -Symmetric Hexa- <i>peri</i> -hexabenzocoronenes<br>with Alternating Hydrophilic and Hydrophobic Substituents in Solution, in the Bulk, and on a Surface.<br>Journal of the American Chemical Society, 2009, 131, 4439-4448. | 6.6  | 107       |
| 42 | Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chemistry, 2013, 5, 621-627.                                                                                                  | 6.6  | 107       |
| 43 | Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution–solid interface. Nature Chemistry, 2016, 8, 711-717.                                                                                                                     | 6.6  | 107       |
| 44 | Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale, 2015, 7, 1566-1585.                                                                                                                                                                     | 2.8  | 106       |
| 45 | Shape-Persistent Macrocycles with Intraannular Polar Groups:Â Synthesis, Liquid Crystallinity, and 2D<br>Organization. Journal of the American Chemical Society, 2004, 126, 214-222.                                                                                           | 6.6  | 104       |
| 46 | Host Matrix Dependence on the Photophysical Properties of Individual Conjugated Polymer Chains.<br>Macromolecules, 2003, 36, 500-507.                                                                                                                                          | 2.2  | 101       |
| 47 | Expression of Chirality by Achiral Coadsorbed Molecules in Chiral Monolayers Observed by STM.<br>Angewandte Chemie - International Edition, 1998, 37, 1223-1226.                                                                                                               | 7.2  | 100       |
| 48 | Oligo( <i>p</i> -phenylenevinylene)â^'Peptide Conjugates: Synthesis and Self-Assembly in Solution and at<br>the Solidâ^'Liquid Interface. Journal of the American Chemical Society, 2008, 130, 14576-14583.                                                                    | 6.6  | 100       |
| 49 | Twisted Aromatic Frameworks: Readily Exfoliable and Solutionâ€Processable Twoâ€Dimensional<br>Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2017, 56, 6946-6951.                                                                                 | 7.2  | 100       |
| 50 | Influence of Supramolecular Organization on Energy Transfer Properties in Chiral<br>Oligo( <i>p</i> -phenylene vinylene) Porphyrin Assemblies. Journal of the American Chemical Society,<br>2007, 129, 9819-9828.                                                              | 6.6  | 98        |
| 51 | Tuning the Supramolecular Chirality of One- and Two-Dimensional Aggregates with the Number of<br>Stereogenic Centers in the Component Porphyrins. Journal of the American Chemical Society, 2010, 132,<br>9350-9362.                                                           | 6.6  | 98        |
| 52 | Star-Shaped Oligo( <i>p</i> -phenylenevinylene) Substituted Hexaarylbenzene:  Purity, Stability, and<br>Chiral Self-assembly <sup>â€</sup> . Journal of the American Chemical Society, 2007, 129, 16190-16196.                                                                 | 6.6  | 96        |
| 53 | Persistent, Well-Defined, Monodisperse, ï€-Conjugated Organic Nanoparticles <i>via</i> G-Quadruplex<br>Self-Assembly. Journal of the American Chemical Society, 2010, 132, 4710-4719.                                                                                          | 6.6  | 96        |
| 54 | Halogen Bonding in Twoâ€Dimensional Crystal Engineering. ChemistryOpen, 2020, 9, 225-241.                                                                                                                                                                                      | 0.9  | 96        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Homo- and Heterochiral Supramolecular Tapes from Achiral, Enantiopure, and Racemic Promesogenic<br>Formamides: Expression of Molecular Chirality in Two and Three Dimensions. Angewandte Chemie -<br>International Edition, 2001, 40, 3217-3220. | 7.2 | 91        |
| 56 | Synthesis and Photomodulation of Rigid Polyphenylene Dendrimers with an Azobenzene Core.<br>Macromolecules, 2003, 36, 578-590.                                                                                                                   | 2.2 | 91        |
| 57 | Imidazo[4,5- <i>f</i> ]-1,10-phenanthrolines: Versatile Ligands for the Design of Metallomesogens.<br>Chemistry of Materials, 2008, 20, 1278-1291.                                                                                               | 3.2 | 91        |
| 58 | Emerging Solventâ€Induced Homochirality by the Confinement of Achiral Molecules Against a Solid<br>Surface. Angewandte Chemie - International Edition, 2008, 47, 4997-5001.                                                                      | 7.2 | 90        |
| 59 | Hydrogen Bonding Versus van der Waals Interactions: Competitive Influence of Noncovalent<br>Interactions on 2D Selfâ€Assembly at the Liquid–Solid Interface. Chemistry - A European Journal, 2010, 16,<br>14447-14458.                           | 1.7 | 88        |
| 60 | Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap <i>N</i> = 9<br>Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 3635-3638.                                               | 6.6 | 88        |
| 61 | Toward Two-Dimensional Supramolecular Control of Hydrogen-Bonded Arrays:  The Case of<br>Isophthalic Acids. Nano Letters, 2003, 3, 1485-1488.                                                                                                    | 4.5 | 85        |
| 62 | Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability.<br>Journal of the American Chemical Society, 2016, 138, 10136-10139.                                                                            | 6.6 | 83        |
| 63 | Bias-Dependent Visualization of Electron Donor (D) and Electron Acceptor (A) Moieties in a Chiral DAD Triad Molecule. Journal of the American Chemical Society, 2003, 125, 14968-14969.                                                          | 6.6 | 82        |
| 64 | Noncovalent Control for Bottom-Up Assembly of Functional Supramolecular Wires. Journal of the American Chemical Society, 2006, 128, 12602-12603.                                                                                                 | 6.6 | 81        |
| 65 | Synthesis of Dehydrobenzo[18]annulene Derivatives and Formation of Self-Assembled Monolayers:<br>Implications of Core Size on Alkyl Chain Interdigitation. Langmuir, 2007, 23, 10190-10197.                                                      | 1.6 | 81        |
| 66 | Assembly and Fiber Formation of a Gemini-Type Hexathienocoronene Amphiphile for Electrical Conduction. Journal of the American Chemical Society, 2013, 135, 13531-13537.                                                                         | 6.6 | 80        |
| 67 | Molecular Organization of Bis-urea Substituted Thiophene Derivatives at the Liquid/Solid Interface<br>Studied by Scanning Tunneling Microscopy. Langmuir, 2000, 16, 10385-10391.                                                                 | 1.6 | 78        |
| 68 | Structure and Mesomorphic Behavior of Alkoxy-Substituted Bis(phthalocyaninato)lanthanide(III)<br>Complexes. Chemistry of Materials, 2003, 15, 3930-3938.                                                                                         | 3.2 | 77        |
| 69 | Supramolecular ï€-Stacked Assemblies of Bis(urea)-Substituted Thiophene Derivatives and Their<br>Electronic Properties Probed with Scanning Tunneling Microscopy and Scanning Tunneling<br>Spectroscopy. Nano Letters, 2001, 1, 201-206.         | 4.5 | 76        |
| 70 | High-Resolution Scanning Tunneling Microscopy Characterization of Mixed Monolayer Protected<br>Gold Nanoparticles. ACS Nano, 2013, 7, 8529-8539.                                                                                                 | 7.3 | 76        |
| 71 | Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties. Journal of Materials Chemistry, 2010, 20, 4333.                                                                         | 6.7 | 74        |
| 72 | Role of Substrate in Directing the Self-Assembly of Multicomponent Supramolecular Networks at the<br>Liquid–Solid Interface. ACS Nano, 2012, 6, 8381-8389.                                                                                       | 7.3 | 74        |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Induction of Chirality in an Achiral Monolayer at the Liquid/Solid Interface by a Supramolecular<br>Chiral Auxiliary. Journal of the American Chemical Society, 2012, 134, 3171-3177.                 | 6.6  | 74        |
| 74 | Nanopatterning of a covalent organic framework host–guest system. Chemical Communications, 2016,<br>52, 68-71.                                                                                        | 2.2  | 74        |
| 75 | 2D Self-Assembly of Oligo(p-phenylene vinylene) Derivatives: From Dimers to Chiral Rosettes. Small, 2004, 1, 131-137.                                                                                 | 5.2  | 73        |
| 76 | Mesostructure of Evaporated Porphyrin Thin Films:  Porphyrin Wheel Formation. Journal of Physical<br>Chemistry B, 1997, 101, 10588-10598.                                                             | 1.2  | 72        |
| 77 | Femtochemistry of Norrish Type-I Reactions: IV. Highly Excited Ketones—Experimental. ChemPhysChem, 2002, 3, 79-97.                                                                                    | 1.0  | 72        |
| 78 | 2D-Structures of Quadruple Hydrogen Bonded Oligo(p-phenylenevinylene)s on Graphite:Â Self-Assembly<br>Behavior and Expression of Chirality. Nano Letters, 2004, 4, 1175-1179.                         | 4.5  | 72        |
| 79 | Reversible Local and Global Switching in Multicomponent Supramolecular Networks: Controlled<br>Guest Release and Capture at the Solution/Solid Interface. ACS Nano, 2015, 9, 11608-11617.             | 7.3  | 72        |
| 80 | Hydrogen bond directed self-assembly of core-substituted naphthalene bisimides with melamines in solution and at the graphite interface. Organic and Biomolecular Chemistry, 2005, 3, 414-422.        | 1.5  | 71        |
| 81 | Solvent-Induced Homochirality in Surface-Confined Low-Density Nanoporous Molecular Networks.<br>Journal of the American Chemical Society, 2012, 134, 19568-19571.                                     | 6.6  | 69        |
| 82 | One Building Block, Two Different Nanoporous Self-Assembled Monolayers: A Combined STM and<br>Monte Carlo Study. ACS Nano, 2012, 6, 897-903.                                                          | 7.3  | 69        |
| 83 | Electric-Field-Mediated Reversible Transformation between Supramolecular Networks and Covalent<br>Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11404-11408.               | 6.6  | 69        |
| 84 | Supramolecular Control of Two-Dimensional Phase Behavior. Chemistry - A European Journal, 2003, 9,<br>1198-1206.                                                                                      | 1.7  | 68        |
| 85 | Fluorescent Self-Assembled Polyphenylene Dendrimer Nanofibers. Macromolecules, 2003, 36,<br>8489-8498.                                                                                                | 2.2  | 67        |
| 86 | Site-Selective Guest Inclusion in Molecular Networks of Butadiyne-Bridged Pyridino and Benzeno<br>Square Macrocycles on a Surface. Journal of the American Chemical Society, 2008, 130, 6666-6667.    | 6.6  | 66        |
| 87 | Femtosecond dynamics of retro Diels–Alder reactions: the concept of concertedness. Chemical<br>Physics Letters, 1999, 304, 134-144.                                                                   | 1.2  | 65        |
| 88 | Self-Assembly of Polyphenylene Dendrimers into Micrometer Long Nanofibers:  An Atomic Force<br>Microscopy Study. Langmuir, 2002, 18, 2385-2391.                                                       | 1.6  | 65        |
| 89 | Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces. Bulletin of the Chemical Society of Japan, 2016, 89, 1277-1306. | 2.0  | 65        |
| 90 | Switching stiction and adhesion of a liquid on a solid. Nature, 2016, 534, 676-679.                                                                                                                   | 13.7 | 65        |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Lateral Fusion of Chemical Vapor Deposited <i>N</i> = 5 Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 9483-9486.                                                                                       | 6.6 | 65        |
| 92  | Femtosecond dynamics of valence-bond isomers of azines: transition states and conical intersections.<br>Chemical Physics Letters, 1998, 298, 129-140.                                                                                        | 1.2 | 64        |
| 93  | Scanning Tunneling Microscopy-Induced Reversible Phase Transformation in the Two-Dimensional<br>Crystal of a Positively Charged Discotic Polycyclic Aromatic Hydrocarbon. Journal of the American<br>Chemical Society, 2011, 133, 5686-5688. | 6.6 | 64        |
| 94  | Nanoscale Control over the Mixing Behavior of Surface-Confined Bicomponent Supramolecular<br>Networks Using an Oriented External Electric Field. ACS Nano, 2017, 11, 10903-10913.                                                            | 7.3 | 64        |
| 95  | Metal Ion Complexation: A Route to 2 D Templates?. Chemistry - A European Journal, 2004, 10, 1124-1132.                                                                                                                                      | 1.7 | 63        |
| 96  | Self-assembly of tetrathiafulvalene derivatives at a liquid/solid interface—compositional and constitutional influence on supramolecular ordering. Journal of Materials Chemistry, 2005, 15, 4601.                                           | 6.7 | 63        |
| 97  | Chiral Alignment of OPV Chromophores:Â Exploitation of the Ureidophthalimide-Based Foldamer.<br>Journal of the American Chemical Society, 2006, 128, 16113-16121.                                                                            | 6.6 | 63        |
| 98  | Processable Rylene Diimide Dyes up to 4â€nm in Length: Synthesis and STM Visualization. Chemistry - A<br>European Journal, 2013, 19, 11842-11846.                                                                                            | 1.7 | 63        |
| 99  | Substrate Effects in the Supramolecular Assembly of 1,3,5-Benzene Tricarboxylic Acid on Graphite and Graphene. Langmuir, 2015, 31, 7016-7024.                                                                                                | 1.6 | 63        |
| 100 | Expression of Chirality and Visualization of Stereogenic Centers by Scanning Tunneling Microscopy.<br>Langmuir, 1999, 15, 2817-2822.                                                                                                         | 1.6 | 62        |
| 101 | Morphology and performance of solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes: Study of preparation conditions. Journal of Membrane Science, 2010, 358, 150-157.                                           | 4.1 | 62        |
| 102 | Direct observation of the femtosecond nonradiative dynamics of azulene in a molecular beam: The anomalous behavior in the isolated molecule. Journal of Chemical Physics, 1999, 110, 9785-9788.                                              | 1.2 | 60        |
| 103 | Photoluminescence Intensity Fluctuations and Electric-Field-Induced Photoluminescence Quenching in Individual Nanoclusters of Poly(phenylenevinylene). ChemPhysChem, 2003, 4, 260-267.                                                       | 1.0 | 60        |
| 104 | Structure and function revealed with submolecular resolution at the liquid–solid interface. Soft<br>Matter, 2009, 5, 721-735.                                                                                                                | 1.2 | 60        |
| 105 | Host–Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid–Solid<br>Interfaces. Langmuir, 2017, 33, 4601-4618.                                                                                              | 1.6 | 60        |
| 106 | Femtosecond Dynamics of Norrish Type-II Reactions: Nonconcerted Hydrogen-Transfer and Diradical<br>Intermediacy. Angewandte Chemie - International Edition, 2000, 39, 260-263.                                                               | 7.2 | 59        |
| 107 | Dynamics in Physisorbed Monolayers of 5-Alkoxy-isophthalic Acid Derivatives at the Liquid/Solid<br>Interface Investigated by Scanning Tunneling Microscopy. Chemistry - A European Journal, 2000, 6,<br>3739-3746.                           | 1.7 | 59        |
| 108 | Singlet-Singlet Annihilation in Multichromophoric Peryleneimide Dendrimers, Determined by Fluorescence Upconversion. ChemPhysChem, 2001, 2, 49-55.                                                                                           | 1.0 | 58        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Solid-state assemblies and optical properties of conjugated oligomers combining fluorene and thiophene units. Journal of Materials Chemistry, 2007, 17, 728-735.                                 | 6.7  | 58        |
| 110 | A Tale of Tails: Alkyl Chain Directed Formation of 2D Porous Networks Reveals Odd–Even Effects and<br>Unexpected Bicomponent Phase Behavior. ACS Nano, 2013, 7, 8031-8042.                       | 7.3  | 58        |
| 111 | Self-Assembly under Confinement: Nanocorrals for Understanding Fundamentals of 2D<br>Crystallization. ACS Nano, 2016, 10, 10706-10715.                                                           | 7.3  | 58        |
| 112 | Hydrogen-bonding and phase-forming behavior of a soluble quinacridone. Advanced Materials, 1996, 8,<br>490-493.                                                                                  | 11.1 | 57        |
| 113 | Tailoring Surfaceâ€Confined Nanopores with Photoresponsive Groups. Angewandte Chemie -<br>International Edition, 2013, 52, 8373-8376.                                                            | 7.2  | 57        |
| 114 | Molecularly Defined Shape-Persistent 2D Oligomers: The Covalent-Template Approach to Molecular<br>Spoked Wheels. Angewandte Chemie - International Edition, 2007, 46, 6802-6806.                 | 7.2  | 56        |
| 115 | Two-Dimensional Crystal Engineering at the Liquid–Solid Interface. Topics in Current Chemistry, 2008, 287, 87-133.                                                                               | 4.0  | 56        |
| 116 | Aggregation Properties of Soluble Quinacridones in Two and Three Dimensions. Chemistry of Materials, 2002, 14, 989-997.                                                                          | 3.2  | 55        |
| 117 | Hydrogen-Bonded Oligo(p-phenylenevinylene) Functionalized with Perylene Bisimide: Self-Assembly and<br>Energy Transfer. Chemistry - A European Journal, 2006, 12, 9046-9055.                     | 1.7  | 55        |
| 118 | Giant molecular spoked wheels in giant voids: two-dimensional molecular self-assembly goes big.<br>Chemical Communications, 2008, , 3897.                                                        | 2.2  | 55        |
| 119 | Large All-Hydrocarbon Spoked Wheels of High Symmetry: Modular Synthesis, Photophysical<br>Properties, and Surface Assembly. Journal of the American Chemical Society, 2010, 132, 1410-1423.      | 6.6  | 55        |
| 120 | Self-Assembled Air-Stable Supramolecular Porous Networks on Graphene. ACS Nano, 2013, 7,<br>10764-10772.                                                                                         | 7.3  | 55        |
| 121 | Poly(sulfone)/sulfonated poly(ether ether ketone) blend membranes: Morphology study and application in the filtration of alcohol based feeds. Journal of Membrane Science, 2008, 324, 67-75.     | 4.1  | 54        |
| 122 | Twoâ€Dimensional Nanoporous Networks Formed by Liquidâ€ŧoâ€Solid Transfer of Hydrogenâ€Bonded<br>Macrocycles Built from DNA Bases. Angewandte Chemie - International Edition, 2016, 55, 659-663. | 7.2  | 54        |
| 123 | 2-Naphthol Complexation by β-Cyclodextrin: Influence of Added Short Linear Alcohols. The Journal of Physical Chemistry, 1996, 100, 19959-19966.                                                  | 2.9  | 53        |
| 124 | Towards enantioselective adsorption in surface-confined nanoporous systems. Chemical Communications, 2015, 51, 4766-4769.                                                                        | 2.2  | 53        |
| 125 | Toward tunable doping in graphene FETs by molecular self-assembled monolayers. Nanoscale, 2013, 5, 9640.                                                                                         | 2.8  | 52        |
| 126 | Adding Four Extra K-Regions to Hexa- <i>peri</i> -hexabenzocoronene. Journal of the American<br>Chemical Society, 2016, 138, 4726-4729.                                                          | 6.6  | 52        |

| #   | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Integrated Cleanroom Process for the Vapor-Phase Deposition of Large-Area Zeolitic Imidazolate<br>Framework Thin Films. Chemistry of Materials, 2019, 31, 9462-9471.                                    | 3.2  | 52        |
| 128 | Tunable doping of graphene by using physisorbed self-assembled networks. Nanoscale, 2016, 8, 20017-20026.                                                                                               | 2.8  | 51        |
| 129 | Chemical modification of 2D materials using molecules and assemblies of molecules. Advances in Physics: X, 2019, 4, 1625723.                                                                            | 1.5  | 51        |
| 130 | Photodimerization of Cinnamate Derivatives Studied by STM. Nano Letters, 2001, 1, 353-359.                                                                                                              | 4.5  | 50        |
| 131 | Two-dimensional crystal engineering using halogen and hydrogen bonds: towards structural landscapes. Chemical Science, 2017, 8, 3759-3769.                                                              | 3.7  | 50        |
| 132 | Synthesis of Triply Fused Porphyrinâ€Nanographene Conjugates. Angewandte Chemie - International<br>Edition, 2018, 57, 11233-11237.                                                                      | 7.2  | 50        |
| 133 | Influence of polyanion type and cationic counter ion on the SRNF performance of polyelectrolyte membranes. Journal of Membrane Science, 2012, 403-404, 216-226.                                         | 4.1  | 49        |
| 134 | Nucleoside-Assisted Self-Assembly of Oligo( <i>p</i> -phenylenevinylene)s at Liquid/Solid Interface:<br>Chirality and Nanostructures. Journal of the American Chemical Society, 2011, 133, 17764-17771. | 6.6  | 48        |
| 135 | Intrinsic Properties of Single Graphene Nanoribbons in Solution: Synthetic and Spectroscopic Studies.<br>Journal of the American Chemical Society, 2018, 140, 10416-10420.                              | 6.6  | 48        |
| 136 | Observing polymerization in 2D dynamic covalent polymers. Nature, 2022, 603, 835-840.                                                                                                                   | 13.7 | 48        |
| 137 | Hexaterphenylyl- and Hexaquaterphenylylbenzene: The Behavior of Chromophores and Electrophores<br>in a Restricted Space. Angewandte Chemie International Edition in English, 1996, 35, 774-776.         | 4.4  | 47        |
| 138 | Visualization of Various Supramolecular Assemblies of<br>Oligo( <i>para</i> â€phenylenevinylene)–Melamine and Perylene Bisimide. Chemistry - A European Journal,<br>2008, 14, 8579-8589.                | 1.7  | 47        |
| 139 | Novel Cleft-Containing Porphyrins as Models for Studying Electron Transfer Processes. Angewandte<br>Chemie International Edition in English, 1997, 36, 361-363.                                         | 4.4  | 46        |
| 140 | Submolecular visualisation of palladium acetate complexation with a bipyridine derivative at a graphite surface. Chemical Communications, 2002, , 1894-1895.                                            | 2.2  | 46        |
| 141 | Layer-by-Layer Construction of Ultrathin Hybrid Films with Proteins and Clay Minerals. Journal of Physical Chemistry C, 2007, 111, 12730-12740.                                                         | 1.5  | 45        |
| 142 | Towards supramolecular electronics. Synthetic Metals, 2004, 147, 43-48.                                                                                                                                 | 2.1  | 44        |
| 143 | Moleculeâ~'Molecule versus Moleculeâ~'Substrate Interactions in the Assembly of Oligothiophenes at Surfaces. Journal of Physical Chemistry B, 2006, 110, 7898-7908.                                     | 1.2  | 44        |
| 144 | Axial ligand control over monolayer and bilayer formation of metal-salophens at the liquid–solid interface. Chemical Communications, 2010, 46, 2548.                                                    | 2.2  | 44        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Forced To Align: Flow-Induced Long-Range Alignment of Hierarchical Molecular Assemblies from 2D to 3D. Journal of the American Chemical Society, 2014, 136, 4117-4120.                                  | 6.6 | 44        |
| 146 | Self-Assembled Monolayers as Templates for Linearly Nanopatterned Covalent Chemical Functionalization of Graphite and Graphene Surfaces. ACS Nano, 2018, 12, 11520-11528.                               | 7.3 | 44        |
| 147 | Real-Time Molecular-Scale Imaging of Dynamic Network Switching between Covalent Organic<br>Frameworks. Journal of the American Chemical Society, 2020, 142, 5964-5968.                                  | 6.6 | 44        |
| 148 | Mesoscale DNA Structural Changes on Binding and Photoreaction with<br>Ru[(TAP) <sub>2</sub> PHEHAT] <sup>2+</sup> . Journal of the American Chemical Society, 2012, 134,<br>10214-10221.                | 6.6 | 43        |
| 149 | Self-assembly of an asymmetrically functionalized [6]helicene at liquid/solid interfaces. Chemical Communications, 2013, 49, 2207.                                                                      | 2.2 | 43        |
| 150 | Femtosecond dynamics of diradicals: transition states, entropic configurations and stereochemistry.<br>Chemical Physics Letters, 1999, 303, 249-260.                                                    | 1.2 | 42        |
| 151 | Chiral Expression at the Solidâ^'Liquid Interface: A Joint Experimental and Theoretical Study of the Self-Assembly of Chiral Porphyrins on Graphite. Langmuir, 2008, 24, 9566-9574.                     | 1.6 | 42        |
| 152 | Nontrivial Differentiation between Two Identical Functionalities within the Same Molecule Studied by STM. Journal of Physical Chemistry B, 1998, 102, 8981-8987.                                        | 1.2 | 41        |
| 153 | A Nanoscale View of Supramolecular Stereochemistry in Self-Assembled Monolayers of Enantiomers and Racemates. Langmuir, 2004, 20, 9628-9635.                                                            | 1.6 | 41        |
| 154 | Two-Dimensional Self-Assembly and Phase Behavior of an Alkoxylated Sandwich-Type<br>Bisphthalocyanine and Its Phthalocyanine Analogues at the Liquidâ^'Solid Interface. Langmuir, 2006, 22,<br>723-728. | 1.6 | 41        |
| 155 | Towards two-dimensional nanoporous networks: crystal engineering at the solid–liquid interface.<br>CrystEngComm, 2010, 12, 3369.                                                                        | 1.3 | 41        |
| 156 | Molecular doping of MoS2 transistors by self-assembled oleylamine networks. Applied Physics Letters, 2016, 109, .                                                                                       | 1.5 | 41        |
| 157 | Ultrathin Single Bilayer Separation Membranes Based on Hyperbranched Sulfonated<br>Poly(aryleneoxindole). Advanced Functional Materials, 2017, 27, 1605068.                                             | 7.8 | 41        |
| 158 | Expression of Molecular Chirality and Two-Dimensional Supramolecular Self-Assembly of Chiral,<br>Racemic, and Achiral Monodendrons at the Liquidâ^'Solid Interface. Langmuir, 2004, 20, 7678-7685.      | 1.6 | 40        |
| 159 | â€~Sergeants-and-Corporals' principle in chiral induction at an interface. Chemical Communications, 2013, 49, 7477.                                                                                     | 2.2 | 40        |
| 160 | Periodic Functionalization of Surface-Confined Pores in a Two-Dimensional Porous Network Using a<br>Tailored Molecular Building Block. ACS Nano, 2016, 10, 2113-2120.                                   | 7.3 | 40        |
| 161 | On the formation of concentric 2D multicomponent assemblies at the solution–solid interface.<br>Chemical Communications, 2017, 53, 1108-1111.                                                           | 2.2 | 40        |
| 162 | Two-Dimensional Dye Assemblies on Surfaces Studied by Scanning Tunneling Microscopy. Topics in<br>Current Chemistry, 2005, , 205-255.                                                                   | 4.0 | 39        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | MARTINI Model for Physisorption of Organic Molecules on Graphite. Journal of Physical Chemistry C, 2013, 117, 15623-15631.                                                                             | 1.5 | 39        |
| 164 | Free Energy Landscape and Dynamics of Supercoiled DNA by High-Speed Atomic Force Microscopy. ACS Nano, 2018, 12, 11907-11916.                                                                          | 7.3 | 39        |
| 165 | Covalent Template Approach Toward Functionalized Oligo-Alkyl-Substituted Shape-Persistent<br>Macrocycles:A Synthesis and Properties of Rings with a Loop. Chemistry of Materials, 2005, 17, 5670-5683. | 3.2 | 38        |
| 166 | Twoâ€Dimensional Oligo(phenyleneâ€ethynyleneâ€butadiynylene)s: Allâ€Covalent Nanoscale Spoked Wheels.<br>Chemistry - A European Journal, 2009, 15, 2518-2535.                                          | 1.7 | 38        |
| 167 | Formation of Multicomponent Star Structures at the Liquid/Solid Interface. Langmuir, 2015, 31, 7032-7040.                                                                                              | 1.6 | 38        |
| 168 | Direct observation of chiral oligo(p-phenylenevinylene)s with scanning tunneling microscopy.<br>Journal of Materials Chemistry, 2003, 13, 2164-2167.                                                   | 6.7 | 37        |
| 169 | Mixing Behavior of Alkoxylated Dehydrobenzo[12]annulenes at the Solid–Liquid Interface: Scanning<br>Tunneling Microscopy and Monte Carlo Simulations. ACS Nano, 2011, 5, 4145-4157.                    | 7.3 | 37        |
| 170 | Functionalized Surface-Confined Pores: Guest Binding Directed by Lateral Noncovalent Interactions<br>at the Solid–Liquid Interface. ACS Nano, 2014, 8, 8683-8694.                                      | 7.3 | 37        |
| 171 | A Multivalent Hexapod: Conformational Dynamics of Six-Legged Molecules in Self-Assembled<br>Monolayers at a Solidâ^'Liquid Interface. ACS Nano, 2009, 3, 1016-1024.                                    | 7.3 | 36        |
| 172 | Squeezing, Then Stacking: From Breathing Pores to Threeâ€Dimensional Ionic Selfâ€Assembly under<br>Electrochemical Control. Angewandte Chemie - International Edition, 2014, 53, 12951-12954.          | 7.2 | 36        |
| 173 | Supramolecular Hydrophobicâ                                                                                                                                                                            | 4.5 | 35        |
| 174 | Photophysical study of photoinduced electron transfer in a bis-thiophene substituted peryleneimide.<br>Photochemical and Photobiological Sciences, 2005, 4, 61-68.                                     | 1.6 | 34        |
| 175 | Rigid tetracatenar liquid crystals derived from 1,10-phenanthroline. Soft Matter, 2008, 4, 2172.                                                                                                       | 1.2 | 34        |
| 176 | Bottom-up assembly of high density molecular nanowire cross junctions at a solid/liquid interface.<br>Chemical Communications, 2008, , 703-705.                                                        | 2.2 | 34        |
| 177 | Tip-Induced Chemical Manipulation of Metal Porphyrins at a Liquid/Solid Interface. Journal of the American Chemical Society, 2014, 136, 17418-17421.                                                   | 6.6 | 34        |
| 178 | Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states. Chemical Physics Letters, 2005, 401, 503-508.                                       | 1.2 | 33        |
| 179 | Principles of molecular assemblies leading to molecular nanostructures. Philosophical Transactions<br>Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120304.                 | 1.6 | 33        |
| 180 | Multicomponent Selfâ€Assembly with a Shapeâ€Persistent <i>N</i> â€Heterotriangulene Macrocycle on<br>Au(111). Chemistry - A European Journal, 2015, 21, 1652-1659.                                     | 1.7 | 33        |

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Losing the Expression of Molecular Chirality in Self-Assembled Physisorbed Monolayers. Nano Letters, 2005, 5, 1395-1398.                                                   | 4.5 | 32        |
| 182 | Detection of RNA Hybridization by Pyrene‣abeled Probes. ChemBioChem, 2009, 10, 1175-1185.                                                                                  | 1.3 | 32        |
| 183 | Polyphenylene Dendrimerâ€Templated In Situ Construction of Inorganic–Organic Hybrid Riceâ€Shaped<br>Architectures. Advanced Functional Materials, 2010, 20, 43-49.         | 7.8 | 32        |
| 184 | Homochiral and heterochiral assembly preferences at different length scales – conglomerates and racemates in the same assemblies. Chemical Communications, 2013, 49, 9320. | 2.2 | 32        |
| 185 | Quantitative Analysis of Scanning Tunneling Microscopy Images of Mixed-Ligand-Functionalized<br>Nanoparticles. Langmuir, 2013, 29, 13723-13734.                            | 1.6 | 32        |
| 186 | Amplification of chirality in surface-confined supramolecular bilayers. Nature Communications, 2018, 9, 3416.                                                              | 5.8 | 32        |
| 187 | Graphite and Graphene Fairy Circles: A Bottom-Up Approach for the Formation of Nanocorrals. ACS<br>Nano, 2019, 13, 5559-5571.                                              | 7.3 | 32        |
| 188 | Halogenated building blocks for 2D crystal engineering on solid surfaces: lessons from hydrogen<br>bonding. Chemical Science, 2019, 10, 3881-3891.                         | 3.7 | 32        |
| 189 | Bimolecular Processes of α-Terthiophene in a β-Cyclodextrin Environment: An Exploratory Study. The<br>Journal of Physical Chemistry, 1996, 100, 2129-2135.                 | 2.9 | 31        |
| 190 | Design and STM Investigation of Intramolecular Folding in Self-Assembled Monolayers on the Surface.<br>Journal of the American Chemical Society, 2004, 126, 13884-13885.   | 6.6 | 31        |
| 191 | Two-Leg Molecular Ladders Formed by Hierarchical Self-Assembly of an Organic Radical. Journal of the American Chemical Society, 2009, 131, 6246-6252.                      | 6.6 | 31        |
| 192 | Flow-Assisted 2D Polymorph Selection: Stabilizing Metastable Monolayers at the Liquid–Solid<br>Interface. Journal of the American Chemical Society, 2014, 136, 7595-7598.  | 6.6 | 31        |
| 193 | Multicomponent Covalent Chemical Patterning of Graphene. ACS Nano, 2021, 15, 10618-10627.                                                                                  | 7.3 | 31        |
| 194 | Polyphenylene Dendrimers with Pentafluorophenyl Units:Â Synthesis and Self-Assembly.<br>Macromolecules, 2007, 40, 4753-4761.                                               | 2.2 | 30        |
| 195 | Steric and Electronic Effects of Electrochemically Generated Aryl Radicals on Grafting of the Graphite Surface. Langmuir, 2019, 35, 2089-2098.                             | 1.6 | 30        |
| 196 | Self-limiting covalent modification of carbon surfaces: diazonium chemistry with a twist. Nanoscale, 2020, 12, 18782-18789.                                                | 2.8 | 30        |
| 197 | Water transport properties of artificial cell walls. Journal of Food Engineering, 2012, 108, 393-402.                                                                      | 2.7 | 29        |
| 198 | Self-assembly of molecular tripods in two dimensions: structure and thermodynamics from computer simulations. RSC Advances, 2013, 3, 25159.                                | 1.7 | 29        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | A Shape-Persistent Polyphenylene Spoked Wheel. Journal of the American Chemical Society, 2016, 138, 15539-15542.                                                                                                                                | 6.6 | 29        |
| 200 | Impact of covalent functionalization by diazonium chemistry on the electronic properties of graphene on SiC. Nanoscale, 2020, 12, 9032-9037.                                                                                                    | 2.8 | 29        |
| 201 | Molecular-Level Insights on Reactive Arrangement in On-Surface Photocatalytic Coupling Reactions<br>Using Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2022, 144, 538-546.                                        | 6.6 | 29        |
| 202 | Adlayers and Low-Dimensional Assemblies of a TTF Derivative at a Liquidâ^'Solid Interface. Nano Letters, 2003, 3, 1375-1378.                                                                                                                    | 4.5 | 28        |
| 203 | Molecular pentagonal tiling: self-assemblies of pentagonal-shaped macrocycles at liquid/solid interfaces. CrystEngComm, 2011, 13, 5551.                                                                                                         | 1.3 | 28        |
| 204 | To Mix or Not To Mix: 2D Crystallization and Mixing Behavior of Saturated and Unsaturated Aliphatic<br>Primary Amides. ACS Nano, 2011, 5, 9122-9137.                                                                                            | 7.3 | 28        |
| 205 | Controlling the Position of Functional Groups at the Liquid/Solid Interface: Impact of Molecular<br>Symmetry and Chirality. Journal of the American Chemical Society, 2011, 133, 20942-20950.                                                   | 6.6 | 28        |
| 206 | Impact of Plasma Pretreatment and Pore Size on the Sealing of Ultra-Low- <i>k</i> Dielectrics by Self-Assembled Monolayers. Langmuir, 2014, 30, 3832-3844.                                                                                      | 1.6 | 28        |
| 207 | Switching of Singleâ€Molecule Magnetic Properties of Tb <sup>III</sup> –Porphyrin Doubleâ€Decker<br>Complexes and Observation of Their Supramolecular Structures on a Carbon Surface. Chemistry - A<br>European Journal, 2014, 20, 11362-11369. | 1.7 | 28        |
| 208 | Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe. Nanoscale, 2018, 10, 7556-7565.                                                                                                  | 2.8 | 28        |
| 209 | Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments. Journal of the American Chemical Society, 2022, 144, 228-235.                                                                                              | 6.6 | 28        |
| 210 | Scanning Tunneling Microscopy and Spectroscopy of Donor-Acceptor-Donor Triads at the Liquid/Solid Interface. ChemPhysChem, 2005, 6, 2389-2395.                                                                                                  | 1.0 | 27        |
| 211 | Locking of Helicity and Shape Complementarity in Diarylethene Dimers on Graphite. Journal of the<br>American Chemical Society, 2008, 130, 386-387.                                                                                              | 6.6 | 27        |
| 212 | Electrochemical reactions at a porphyrin–copper interface. Physical Chemistry Chemical Physics,<br>2009, 11, 5422.                                                                                                                              | 1.3 | 27        |
| 213 | Computer Simulation of Chiral Nanoporous Networks on Solid Surfaces. Langmuir, 2010, 26, 9506-9515.                                                                                                                                             | 1.6 | 27        |
| 214 | Role of pseudopolymorphism on concentration dependent competitive adsorption at a liquid/solid interface. Chemical Communications, 2010, 46, 9125.                                                                                              | 2.2 | 27        |
| 215 | Observation of α-terthiophene excited dimer fluorescence in aqueous solutions of γ-cyclodextrin.<br>Chemical Physics Letters, 1997, 277, 44-50.                                                                                                 | 1.2 | 26        |
| 216 | Conformational characterization from modulated single molecule fluorescence intensity traces.<br>Chemical Physics Letters, 2002, 362, 534-540.                                                                                                  | 1.2 | 26        |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Pasteurian Segregation on a Surface Imaged In Situ at the Molecular Level. Angewandte Chemie -<br>International Edition, 2012, 51, 11981-11985.                                                                                | 7.2  | 26        |
| 218 | Chiral Induction and Amplification in Supramolecular Systems at the Liquid–Solid Interface.<br>ChemPhysChem, 2013, 14, 1583-1590.                                                                                              | 1.0  | 26        |
| 219 | Confined polydiacetylene polymerization reactions for programmed length control. Chemical Communications, 2017, 53, 4207-4210.                                                                                                 | 2.2  | 26        |
| 220 | Porous Self-Assembled Molecular Networks as Templates for Chiral-Position-Controlled Chemical<br>Functionalization of Graphitic Surfaces. Journal of the American Chemical Society, 2020, 142,<br>7699-7708.                   | 6.6  | 26        |
| 221 | Thermodynamic Controlled Hierarchical Assembly of Ternary Supramolecular Networks at the<br>Liquid–Solid Interface. Chemistry - A European Journal, 2009, 15, 5418-5423.                                                       | 1.7  | 25        |
| 222 | Self-Assembly Behavior of Alkylated Isophthalic Acids Revisited: Concentration in Control and Guest-Induced Phase Transformation. Langmuir, 2014, 30, 15206-15211.                                                             | 1.6  | 25        |
| 223 | lodide mediated reductive decomposition of diazonium salts: towards mild and efficient covalent functionalization of surface-supported graphene. Nanoscale, 2020, 12, 11916-11926.                                             | 2.8  | 25        |
| 224 | Doping Graphene with Substitutional Mn. ACS Nano, 2021, 15, 5449-5458.                                                                                                                                                         | 7.3  | 25        |
| 225 | Self-Assembled Polyphenylene Dendrimer Nanofibers on Highly Oriented Pyrolytic Graphite Studied by<br>Atomic Force Microscopy. Langmuir, 2002, 18, 8223-8230.                                                                  | 1.6  | 24        |
| 226 | Delivery of Antisense Oligonucleotides Using Cholesterol-Modified Sense Dendrimers and Cationic<br>Lipids. Bioconjugate Chemistry, 2005, 16, 827-836.                                                                          | 1.8  | 24        |
| 227 | Threeâ€Component Langmuir–Blodgett Films Consisting of Surfactant, Clay Mineral, and Lysozyme:<br>Construction and Characterization. Chemistry - A European Journal, 2010, 16, 2461-2469.                                      | 1.7  | 24        |
| 228 | Facile preparation of Langmuir–Blodgett films of water-soluble proteins and hybrid protein–clay<br>films. Journal of Materials Chemistry, 2010, 20, 698-705.                                                                   | 6.7  | 24        |
| 229 | Surface-Induced Diastereomeric Complex Formation of a Nucleoside at the Liquid/Solid Interface:<br>Stereoselective Recognition and Preferential Adsorption. Journal of the American Chemical Society,<br>2013, 135, 9811-9819. | 6.6  | 24        |
| 230 | Structure, mechanics, and binding mode heterogeneity of LEDGF/p75–DNA nucleoprotein complexes revealed by scanning force microscopy. Nanoscale, 2014, 6, 4611-4619.                                                            | 2.8  | 24        |
| 231 | Biasing Enantiomorph Formation via Geometric Confinement: Nanocorrals for Chiral Induction at the<br>Liquid–Solid Interface. Journal of the American Chemical Society, 2018, 140, 11565-11568.                                 | 6.6  | 24        |
| 232 | 2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement. Chemical Society Reviews, 2021, 50, 5884-5897.                                                                             | 18.7 | 24        |
| 233 | High-throughput AFM analysis reveals unwrapping pathways of H3 and CENP-A nucleosomes.<br>Nanoscale, 2021, 13, 5435-5447.                                                                                                      | 2.8  | 24        |
| 234 | Chiral Polymorphism:Â A Scanning Tunneling Microscopy Study. Langmuir, 2000, 16, 9887-9894.                                                                                                                                    | 1.6  | 23        |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | [Ru(TAP)3]2+-Photosensitized DNA Cleavage Studied by Atomic Force Microscopy and Gel<br>Electrophoresis: A Comparative Study. Chemistry - A European Journal, 2006, 12, 758-762.                                                                                                       | 1.7 | 23        |
| 236 | Adsorption of Aldehydes on a Graphite Substrate: Combined Thermodynamic Study of C6â^'C13<br>Homologues with a Structural and Dynamical Study of Dodecanal. Journal of Physical Chemistry C,<br>2010, 114, 6027-6034.                                                                  | 1.5 | 23        |
| 237 | Diazadithia[7]helicenes: Synthetic Exploration, Solid tate Structure, and Properties. Chemistry - A<br>European Journal, 2013, 19, 12077-12085.                                                                                                                                        | 1.7 | 23        |
| 238 | Layer-by-Layer synthesis and tunable optical properties of hybrid magnetic–plasmonic nanocomposites<br>using short bifunctional molecular linkers. Materials Letters, 2014, 118, 99-102.                                                                                               | 1.3 | 23        |
| 239 | One-pot functionalization of cellulose nanocrystals with various cationic groups. Cellulose, 2016, 23, 3569-3576.                                                                                                                                                                      | 2.4 | 23        |
| 240 | Covalent functionalization of molybdenum disulfide by chemically activated diazonium salts.<br>Nanoscale, 2021, 13, 2972-2981.                                                                                                                                                         | 2.8 | 23        |
| 241 | Breakdown of Universal Scaling for Nanometer-Sized Bubbles in Graphene. Nano Letters, 2021, 21, 8103-8110.                                                                                                                                                                             | 4.5 | 23        |
| 242 | On the use of dynamic fluorescence measurements to determine equilibrium and kinetic constants.<br>The inclusion of pyrene in β-cyclodextrin cavities. Chemical Physics Letters, 1996, 249, 46-52.                                                                                     | 1.2 | 22        |
| 243 | Nanometer space resolved photochemistry. Chemical Communications, 2001, , 585-592.                                                                                                                                                                                                     | 2.2 | 22        |
| 244 | Probing Carboxylic Acid Groups in Replaced and Mixed Self-Assembled Monolayers by Individual<br>Ionized Dendrimer Molecules:  An Atomic Force Microscopy Study. Langmuir, 2002, 18, 1801-1810.                                                                                         | 1.6 | 22        |
| 245 | Synthesis, separation, and isomer-dependent packing in two dimensions—detected by scanning tunnelling microscopy—of a TTF derivative. Chemical Communications, 2003, , 906-907.                                                                                                        | 2.2 | 22        |
| 246 | Synthesis and Adsorption of Shape-Persistent Macrocycles Containing Polycyclic Aromatic<br>Hydrocarbons in the Rigid Framework. Langmuir, 2007, 23, 1281-1286.                                                                                                                         | 1.6 | 22        |
| 247 | In Situ Modification of Three-Dimensional Polyphenylene Dendrimer-Templated CuO Rice-Shaped<br>Architectures with Electron Beam Irradiation. Journal of Physical Chemistry C, 2010, 114, 13465-13470.                                                                                  | 1.5 | 22        |
| 248 | Efficient screening of 2D molecular polymorphs at the solution–solid interface. Nanoscale, 2015, 7, 5344-5349.                                                                                                                                                                         | 2.8 | 22        |
| 249 | Tip-enhanced Raman scattering microscopy: Recent advance in tip production. Japanese Journal of Applied Physics, 2016, 55, 08NA02.                                                                                                                                                     | 0.8 | 22        |
| 250 | Graphene Meets Ionic Liquids: Fermi Level Engineering <i>via</i> Electrostatic Forces. ACS Nano, 2019, 13, 3512-3521.                                                                                                                                                                  | 7.3 | 22        |
| 251 | Molecular organization of azobenzene derivatives at the liquid/graphite interface observed with scanning tunneling microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1419. | 1.6 | 21        |
| 252 | Unusual Two-Dimensional Multicomponent Self-Assembly Probed by Scanning Tunneling Microscopy.<br>ChemPhysChem, 2002, 3, 966-969.                                                                                                                                                       | 1.0 | 21        |

| #   | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Identification of oligo(p-phenylene vinylene)–naphthalene diimide heterocomplexes by scanning<br>tunneling microscopy and spectroscopy at the liquid–solid interface. Chemical Communications,<br>2008, , 5496. | 2.2  | 21        |
| 254 | The impact of grafted surface defects and their controlled removal on supramolecular self-assembly.<br>Chemical Science, 2016, 7, 7028-7033.                                                                    | 3.7  | 21        |
| 255 | Twisted Aromatic Frameworks: Readily Exfoliable and Solutionâ€Processable Twoâ€Dimensional<br>Conjugated Microporous Polymers. Angewandte Chemie, 2017, 129, 7050-7055.                                         | 1.6  | 21        |
| 256 | Covalent Functionalization of Carbon Surfaces: Diaryliodonium versus Aryldiazonium Chemistry.<br>Chemistry of Materials, 2020, 32, 5246-5255.                                                                   | 3.2  | 21        |
| 257 | Rastertunnelmikroskopische Beobachtung der Monoschicht eines Diacetylenderivats auf Graphit vor<br>und nach der Polymerisation mit submolekularer AuflĶsung. Angewandte Chemie, 1997, 109, 2713-2715.           | 1.6  | 20        |
| 258 | Synthesis and Optical Properties of Polyphenylene Dendrimers Based on Perylenes. Journal of Organic Chemistry, 2003, 68, 9802-9808.                                                                             | 1.7  | 20        |
| 259 | Assessing the role of chirality in the formation of rosette-like supramolecular assemblies on surfaces. Chemical Communications, 2011, 47, 10924.                                                               | 2.2  | 20        |
| 260 | Self-assembly of supramolecular wires and cross-junctions and efficient electron tunnelling across them. Chemical Science, 2011, 2, 1945.                                                                       | 3.7  | 20        |
| 261 | Structural polymorphism in self-assembled networks of a triphenylene based macrocycle. Physical Chemistry Chemical Physics, 2013, 15, 12495.                                                                    | 1.3  | 20        |
| 262 | Torands Revisited: Metal Sequestration and Selfâ€Assembly of Cycloâ€2,9â€trisâ€1,10â€phenanthroline Hexaaza<br>Macrocycles. Chemistry - A European Journal, 2015, 21, 8426-8434.                                | 1.7  | 20        |
| 263 | Polar Order in Spin-Coated Films of a Regioregular Chiral Poly[(S)-3-(3,7-dimethyloctyl)thiophene].<br>Advanced Materials, 2005, 17, 708-712.                                                                   | 11.1 | 19        |
| 264 | Insights into dynamic covalent chemistry at surfaces. Chemical Communications, 2015, 51, 16338-16341.                                                                                                           | 2.2  | 19        |
| 265 | Structural Insights into the Mechanism of Chiral Recognition and Chirality Transfer in Host–Guest<br>Assemblies at the Liquid–Solid Interface. Journal of Physical Chemistry C, 2018, 122, 8228-8235.           | 1.5  | 19        |
| 266 | Reversing the Handedness of Selfâ€Assembled Porous Molecular Networks through the Number of<br>Identical Chiral Centres. Angewandte Chemie - International Edition, 2019, 58, 7733-7738.                        | 7.2  | 19        |
| 267 | Potential-driven molecular tiling of a charged polycyclic aromatic compound. Chemical Communications, 2014, 50, 10376-10378.                                                                                    | 2.2  | 18        |
| 268 | Square Tiling by Square Macrocycles at the Liquid/Solid Interface: Coâ€crystallisation with One―or<br>Twoâ€Đimensional Order. Chemistry - A European Journal, 2015, 21, 6806-6816.                              | 1.7  | 18        |
| 269 | Direct visualization of microphase separation in block copoly(3-alkylthiophene)s. RSC Advances, 2015, 5, 8721-8726.                                                                                             | 1.7  | 18        |
| 270 | Complex Chiral Induction Processes at the Solution/Solid Interface. Journal of Physical Chemistry C, 2016, 120, 17444-17453.                                                                                    | 1.5  | 18        |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Odd–Even Effects in Chiral Phase Transition at the Liquid/Solid Interface. Journal of Physical Chemistry C, 2017, 121, 10430-10438.                                                        | 1.5 | 18        |
| 272 | Alkyl chain length effects on double-deck assembly at a liquid/solid interface. Nanoscale, 2018, 10, 14993-15002.                                                                          | 2.8 | 18        |
| 273 | Synthesis of Triply Fused Porphyrinâ€Nanographene Conjugates. Angewandte Chemie, 2018, 130,<br>11403-11407.                                                                                | 1.6 | 18        |
| 274 | Monolayer self-assembly at liquid–solid interfaces: chirality and electronic properties of molecules at surfaces. Journal of Physics Condensed Matter, 2008, 20, 184003.                   | 0.7 | 17        |
| 275 | Formation of a non-crystalline bimolecular porous network at a liquid/solid interface. Chemical Communications, 2011, 47, 11459.                                                           | 2.2 | 17        |
| 276 | Ordering of Molecules with ï€-Conjugated Triangular Core by Switching Hydrogen Bonding and van<br>der Waals Interactions. Journal of Physical Chemistry C, 2012, 116, 17082-17088.         | 1.5 | 17        |
| 277 | Influence of the regioregularity on the chiral supramolecular organization of poly(3-alkylsulfanylthiophene)s. RSC Advances, 2013, 3, 3342.                                                | 1.7 | 17        |
| 278 | Remote excitation-tip-enhanced Raman scattering microscopy using silver nanowire. Japanese Journal of Applied Physics, 2016, 55, 08NB03.                                                   | 0.8 | 17        |
| 279 | Liquid Nickel Salts: Synthesis, Crystal Structure Determination, and Electrochemical Synthesis of<br>Nickel Nanoparticles. Chemistry - A European Journal, 2016, 22, 1010-1020.            | 1.7 | 17        |
| 280 | Self-Assembled Polystyrene Beads for Templated Covalent Functionalization of Graphitic Substrates<br>Using Diazonium Chemistry. ACS Applied Materials & Interfaces, 2018, 10, 12005-12012. | 4.0 | 17        |
| 281 | Controlled Synthesis of a Helical Conjugated Polythiophene. Macromolecules, 2018, 51, 3504-3514.                                                                                           | 2.2 | 17        |
| 282 | Phase selectivity triggered by nanoconfinement: the impact of corral dimensions. Chemical Communications, 2019, 55, 2226-2229.                                                             | 2.2 | 17        |
| 283 | Two-dimensional perovskites with alternating cations in the interlayer space for stable light-emitting diodes. Nanophotonics, 2021, 10, 2145-2156.                                         | 2.9 | 17        |
| 284 | Behavior of Binary Alcohol Mixtures Adsorbed on Graphite Using Calorimetry and Scanning Tunneling<br>Microscopy. Langmuir, 2008, 24, 2501-2508.                                            | 1.6 | 16        |
| 285 | STM, STS and Bias-Dependent Imaging on Organic Monolayers at the Solid–Liquid Interface. Topics in Current Chemistry, 2008, 285, 269-312.                                                  | 4.0 | 16        |
| 286 | Synthesis and properties of a triphenylene–butadiynylenemacrocycle. Journal of Materials Chemistry, 2011, 21, 1404-1415.                                                                   | 6.7 | 16        |
| 287 | Chiral occlusion in two-dimensional binary supramolecular networks studied by the Monte Carlo method. CrystEngComm, 2011, 13, 5542.                                                        | 1.3 | 16        |
| 288 | Harnessing by a diacetylene unit: a molecular design for porous two-dimensional network formation at the liquid/solid interface. Chemical Communications, 2014, 50, 2831.                  | 2.2 | 16        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | "Concentration-in-Control―self-assembly concept at the liquid–solid interface challenged. Chemical<br>Science, 2021, 12, 13167-13176.                                                                | 3.7 | 16        |
| 290 | Chemical Defectâ€Driven Response on Grapheneâ€Based Chemiresistors for Subâ€ppm Ammonia Detection.<br>Angewandte Chemie - International Edition, 2022, 61, .                                         | 7.2 | 16        |
| 291 | Fluorescence depolarisation from 2,5,8,11-tetra-t-butylperylene globally analysed upon excitation in S1 and Sn. Chemical Physics Letters, 1995, 233, 538-544.                                        | 1.2 | 15        |
| 292 | Supramolecular Loop Stitches of Discrete Block Molecules on Graphite: Tunable Hydrophobicity by<br>Naphthalenediimide End-Capped Oligodimethylsiloxane. Chemistry of Materials, 2018, 30, 3372-3378. | 3.2 | 15        |
| 293 | Controlled Synthesis and Supramolecular Organization of Conjugated Star-Shaped Polymers.<br>Macromolecules, 2018, 51, 8689-8697.                                                                     | 2.2 | 15        |
| 294 | Nucleation Mechanisms of Self-Assembled Physisorbed Monolayers on Graphite. Journal of Physical Chemistry C, 2019, 123, 17510-17520.                                                                 | 1.5 | 15        |
| 295 | On the Thermal Stability of Aryl Groups Chemisorbed on Graphite. Journal of Physical Chemistry C, 2020, 124, 1980-1990.                                                                              | 1.5 | 15        |
| 296 | Chirality in porous self-assembled monolayer networks at liquid/solid interfaces: induction, reversion, recognition and transfer. Chemical Communications, 2021, 57, 962-977.                        | 2.2 | 15        |
| 297 | Hexaterphenylyl―und Hexaquaterphenylylbenzol: das Verhalten von Chromophoren und<br>Elektrophoren auf engem Raum. Angewandte Chemie, 1996, 108, 830-833.                                             | 1.6 | 14        |
| 298 | Supramolecular chemistry at the liquid/solid interface probed by scanning tunnelling microscopy.<br>International Journal of Nanotechnology, 2006, 3, 462.                                           | 0.1 | 14        |
| 299 | Emission properties of a highly fluorescent pyrene dye in solution and in the liquid state. Journal of<br>Photochemistry and Photobiology A: Chemistry, 2006, 178, 251-257.                          | 2.0 | 14        |
| 300 | Dynamics in Self-assembled Organic Monolayers at the Liquid/Solid Interface Revealed by Scanning<br>Tunneling Microscopy. Chimia, 2012, 66, 38-43.                                                   | 0.3 | 14        |
| 301 | Efficient molecular recognition based on nonspecific van der Waals interaction at the solid/liquid interface. Chemical Communications, 2014, 50, 11946-11949.                                        | 2.2 | 14        |
| 302 | Synthesis, Photophysical Characterization, and Selfâ€Assembly of<br>Hexaâ€ <i>peri</i> â€hexabenzocoronene/Benzothiadiazole Donor–Acceptor Structure. ChemPlusChem,<br>2017, 82, 1030-1033.          | 1.3 | 14        |
| 303 | Area-selective passivation of sp <sup>2</sup> carbon surfaces by supramolecular self-assembly.<br>Nanoscale, 2017, 9, 5188-5193.                                                                     | 2.8 | 14        |
| 304 | Nanoconfined self-assembly on a grafted graphitic surface under electrochemical control.<br>Nanoscale, 2017, 9, 362-368.                                                                             | 2.8 | 14        |
| 305 | How Does Chemisorption Impact Physisorption? Molecular View of Defect Incorporation and Perturbation of Two-Dimensional Self-Assembly. Journal of Physical Chemistry C, 2018, 122, 24046-24054.      | 1.5 | 14        |
| 306 | The impact of grafted surface defects on the on-surface Schiff-base chemistry at the solid–liquid interface. Chemical Communications, 2018, 54, 9905-9908.                                           | 2.2 | 14        |

| #   | Article                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Carbocatalysis with pristine graphite: on-surface nanochemistry assists solution-based catalysis.<br>Chemical Society Reviews, 2021, 50, 2280-2296.                                       | 18.7 | 14        |
| 308 | Molecular dopant determines the structure of a physisorbed self-assembled molecular network.<br>Chemical Communications, 2021, 57, 1454-1457.                                             | 2.2  | 14        |
| 309 | Anatomy of On-Surface Synthesized Boroxine Two-Dimensional Polymers. ACS Nano, 2020, 14, 2354-2365.                                                                                       | 7.3  | 14        |
| 310 | Unidirectional supramolecular self-assembly inside nanocorrals <i>via in situ</i> STM nanoshaving.<br>Physical Chemistry Chemical Physics, 2018, 20, 27482-27489.                         | 1.3  | 13        |
| 311 | Adaptive Self-Assembly in 2D Nanoconfined Spaces: Dealing with Geometric Frustration. Chemistry of Materials, 2019, 31, 6779-6786.                                                        | 3.2  | 13        |
| 312 | Detection and Stabilization of a Previously Unknown Two-Dimensional (Pseudo)polymorph using<br>Lateral Nanoconfinement. Journal of the American Chemical Society, 2021, 143, 11080-11087. | 6.6  | 13        |
| 313 | Effect of different oxide and hybrid precursors on MOF-CVD of ZIF-8 films. Dalton Transactions, 2021, 50, 6784-6788.                                                                      | 1.6  | 13        |
| 314 | Self-Assembly of a Functionalized Alkylated Isophthalic Acid at the Au(111)/Electrolyte Interface:<br>Structure and Dynamics. Journal of Physical Chemistry C, 2009, 113, 11567-11574.    | 1.5  | 12        |
| 315 | STM visualisation of counterions and the effect of charges on self-assembled monolayers of macrocycles. Beilstein Journal of Nanotechnology, 2011, 2, 674-680.                            | 1.5  | 12        |
| 316 | 4,5â€Pyrenocyanine—Just Another Phthalocyanine? A STM and 2D WAXS Study. Chemistry - A European<br>Journal, 2012, 18, 3264-3276.                                                          | 1.7  | 12        |
| 317 | Reversible Anionâ€Driven Switching of an Organic 2D Crystal at a Solid–Liquid Interface. Small, 2017, 13,<br>1702379.                                                                     | 5.2  | 12        |
| 318 | Doping of graphene for the application in nano-interconnect. Microelectronic Engineering, 2017, 167, 42-46.                                                                               | 1.1  | 12        |
| 319 | Hierarchical two-dimensional molecular assembly through dynamic combination of conformational states at the liquid/solid interface. Chemical Science, 2020, 11, 9254-9261.                | 3.7  | 12        |
| 320 | Interface Chemistry of Graphene/Cu Grafted By 3,4,5-Tri-Methoxyphenyl. Scientific Reports, 2020, 10,<br>4114.                                                                             | 1.6  | 12        |
| 321 | Guiding the Selfâ€Assembly of a Secondâ€Generation Polyphenylene Dendrimer into Wellâ€Defined Patterns.<br>Small, 2008, 4, 1160-1167.                                                     | 5.2  | 11        |
| 322 | A multivalent hexapod having 24 stereogenic centers: chirality and conformational dynamics in homochiral and heterochiral systems. CrystEngComm, 2011, 13, 5584.                          | 1.3  | 11        |
| 323 | Organization of the enantiomeric and racemic forms of an amphiphilic resorcinol derivative at the air–water and graphite–1â€phenyloctane interfaces. Chirality, 2012, 24, 155-166.        | 1.3  | 11        |
| 324 | Surface-confined activation of ultra low-k dielectrics in CO2 plasma. Applied Physics Letters, 2016, 108,                                                                                 | 1.5  | 11        |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Hierarchical self-assembly of enantiopure and racemic helicenes at the liquid/solid interface: from 2D to 3D. Nanoscale, 2017, 9, 18075-18080.                                                    | 2.8 | 11        |
| 326 | Synthesis and supramolecular organization of chiral poly(thiophene)–magnetite hybrid<br>nanoparticles. Polymer Chemistry, 2018, 9, 3029-3036.                                                     | 1.9 | 11        |
| 327 | Controlling the Bioreceptor Spatial Distribution at the Nanoscale for Single Molecule Counting in<br>Microwell Arrays. ACS Sensors, 2019, 4, 2327-2335.                                           | 4.0 | 11        |
| 328 | One‣tep Covalent Immobilization of β yclodextrin on sp 2 Carbon Surfaces for Selective Trace Amount<br>Probing of Guests. Advanced Functional Materials, 2019, 29, 1901488.                       | 7.8 | 11        |
| 329 | Artificial β-propeller protein-based hydrolases. Chemical Communications, 2019, 55, 8880-8883.                                                                                                    | 2.2 | 11        |
| 330 | Alkoxy Chain Number Effect on Self-Assembly of a Trigonal Molecule at the Liquid/Solid Interface.<br>Journal of Physical Chemistry C, 2019, 123, 27020-27029.                                     | 1.5 | 11        |
| 331 | Transformation from helical to layered supramolecular organization of asymmetric perylene diimides<br><i>via</i> multiple intermolecular hydrogen bonding. Chemical Science, 2020, 11, 4960-4968. | 3.7 | 11        |
| 332 | Stereospecific Epitaxial Growth of Bilayered Porous Molecular Networks. Journal of the American<br>Chemical Society, 2020, 142, 8662-8671.                                                        | 6.6 | 11        |
| 333 | Chiral Adsorption Conformations of Long-Chain <i>n</i> -Alkanes Induced by Lattice Mismatch. Journal of Physical Chemistry C, 2021, 125, 1557-1563.                                               | 1.5 | 11        |
| 334 | From 2D to 3D: Bridging Self-Assembled Monolayers to a Substrate-Induced Polymorph in a Molecular<br>Semiconductor. Chemistry of Materials, 2022, 34, 2238-2248.                                  | 3.2 | 11        |
| 335 | Formation and manipulation of supramolecular structures of oligo(p-phenylenevinylene) terminated poly(propylene imine) dendrimers. Chemical Communications, 2002, , 1264-1265.                    | 2.2 | 10        |
| 336 | In Situ Investigation of Dynamical Nanophase Separation. Langmuir, 2003, 19, 8256-8261.                                                                                                           | 1.6 | 10        |
| 337 | Directing the Assembly of Charged Organic Molecules by a Hydrophilicâ^'Hydrophobic Nanostructured<br>Monolayer at Electrified Interfaces. Nano Letters, 2008, 8, 1163-1168.                       | 4.5 | 10        |
| 338 | Aggregation Kinetics of Macrocycles Detected by Magnetic Birefringence. Journal of the American Chemical Society, 2009, 131, 14134-14135.                                                         | 6.6 | 10        |
| 339 | From 2D to 3D. Nature Chemistry, 2011, 3, 14-15.                                                                                                                                                  | 6.6 | 10        |
| 340 | Transfer of chiral information from a chiral solvent to a two-dimensional network. Faraday<br>Discussions, 2017, 204, 215-231.                                                                    | 1.6 | 10        |
| 341 | Tailoring atomic layer growth at the liquid-metal interface. Nature Communications, 2018, 9, 4889.                                                                                                | 5.8 | 10        |
| 342 | Hydrogenâ€Bonded Donor–Acceptor Arrays at the Solution–Graphite Interface. Chemistry - A European<br>Journal, 2018, 24, 12071-12077.                                                              | 1.7 | 10        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Preferred Formation of Minority Concomitant Polymorphs in 2D Selfâ€Assembly under Lateral<br>Nanoconfinement. Angewandte Chemie - International Edition, 2019, 58, 12964-12968.                                                  | 7.2 | 10        |
| 344 | Epitaxial growth of light-responsive azobenzene molecular crystal actuators on oriented polyethylene films. Journal of Materials Chemistry C, 2020, 8, 694-699.                                                                  | 2.7 | 10        |
| 345 | Controlled Fabrication of Optical Signal Input/Output Sites on Plasmonic Nanowires. Nano Letters, 2020, 20, 2460-2467.                                                                                                           | 4.5 | 10        |
| 346 | Steady-state and time-resolved fluorescence anisotropy of<br>2,9-di-n-pentyl-5,6,11,12-tetraazo-5,6,11,12-tetrahydrocoronene-5,6,11,12-tetracarboxy-bis-n-heptadecyclimide.<br>Chemical Physics Letters, 1996, 248, 13-19.       | 1.2 | 9         |
| 347 | Pulsed-Force-Mode AFM Studies of Polyphenylene Dendrimers on Self-Assembled Monolayers. Journal of Physical Chemistry C, 2007, 111, 8142-8144.                                                                                   | 1.5 | 9         |
| 348 | Complexation of Lipofectamine and Cholesterol-Modified DNA Sequences Studied by Single-Molecule Fluorescence Techniques. Biomacromolecules, 2007, 8, 3382-3392.                                                                  | 2.6 | 9         |
| 349 | Affecting surface chirality via multicomponent adsorption of chiral and achiral molecules. Chemical Communications, 2014, 50, 11903-11906.                                                                                       | 2.2 | 9         |
| 350 | Label-free visualization of heterogeneities and defects in metal–organic frameworks using nonlinear optics. Chemical Communications, 2020, 56, 13331-13334.                                                                      | 2.2 | 9         |
| 351 | Coplanar <i>versus</i> Noncoplanar Carboxyl Groups: The Influence of Sterically Enforced<br>Noncoplanarity on the 2D Mixing Behavior of Benzene Tricarboxylic Acids. Journal of Physical<br>Chemistry C, 2020, 124, 24874-24882. | 1.5 | 9         |
| 352 | Controlled graphite surface functionalization using contact and remote photocatalytic oxidation.<br>Carbon, 2021, 172, 637-646.                                                                                                  | 5.4 | 9         |
| 353 | Comparative in vitro performances of bare Nitinol surfaces. Bio-Medical Materials and Engineering, 2008, 18, 1-14.                                                                                                               | 0.4 | 9         |
| 354 | Femtosecond dynamics of hydrogen elimination: benzene formation from cyclohexadiene. Physical Chemistry Chemical Physics, 2000, 2, 877-883.                                                                                      | 1.3 | 8         |
| 355 | Preprogrammed 2D Folding of Conformationally Flexible Oligoamides: Foldamers with Multiple Turn<br>Elements. ACS Nano, 2012, 6, 10684-10698.                                                                                     | 7.3 | 8         |
| 356 | Tunable n―and pâ€ŧype doping of singleâ€layer graphene by engineering its interaction with the<br>SiO <sub>2</sub> support. Physica Status Solidi - Rapid Research Letters, 2012, 6, 53-55.                                      | 1.2 | 8         |
| 357 | Hierarchical growth of curved organic nanowires upon evaporation induced self-assembly. Chemical Communications, 2014, 50, 13216-13219.                                                                                          | 2.2 | 8         |
| 358 | Electrostatically Driven Guest Binding in a Self-Assembled Porous Network at the Liquid/Solid<br>Interface. Langmuir, 2018, 34, 6036-6045.                                                                                       | 1.6 | 8         |
| 359 | Hydrogenâ€Bonded Siloxane Liquid Crystals for Hybrid Nanomaterials. Helvetica Chimica Acta, 2018, 101,<br>e1800130.                                                                                                              | 1.0 | 8         |
| 360 | Synthesis and helical supramolecular organization of discotic liquid crystalline<br>dibenzo[ <i>hi</i> , <i>st</i> ]ovalene. Journal of Materials Chemistry C, 2019, 7, 12898-12906.                                             | 2.7 | 8         |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Ambient Bistable Single Dipole Switching in a Molecular Monolayer. Angewandte Chemie -<br>International Edition, 2020, 59, 14049-14053.                                                                      | 7.2 | 8         |
| 362 | Trapping a pentagonal molecule in a self-assembled molecular network: an alkoxylated isosceles triangular molecule does the job. Chemical Communications, 2020, 56, 5401-5404.                               | 2.2 | 8         |
| 363 | Photo-induced electrodeposition of metallic nanostructures on graphene. Nanoscale, 2020, 12, 11063-11069.                                                                                                    | 2.8 | 8         |
| 364 | Grafting Ink for Direct Writing: Solvation Activated Covalent Functionalization of Graphene.<br>Advanced Science, 2022, 9, e2105017.                                                                         | 5.6 | 8         |
| 365 | Morphology of protein polymer hybrid films studied by atomic force microscopy and scanning confocal fluorescence microscopy. Thin Solid Films, 2003, 443, 124-135.                                           | 0.8 | 7         |
| 366 | 2D analogues of the inverted hexagonal phase self-assembled from 4,6-dialkoxylated isophthalic acids<br>at solid–liquid interfaces. Nanoscale, 2010, 2, 1773.                                                | 2.8 | 7         |
| 367 | Chain relaxation dynamics of DNA adsorbing at a solid–liquid interface. Nanoscale, 2013, 5, 2264.                                                                                                            | 2.8 | 7         |
| 368 | Stuffing-enabled surface confinement of silanes used as sealing agents on CF4 plasma-exposed 2.0 p-OSC films. Microelectronic Engineering, 2015, 137, 70-74.                                                 | 1.1 | 7         |
| 369 | Design of efficient sergeant molecules for chiral induction in nano-porous supramolecular assemblies. RSC Advances, 2015, 5, 6642-6646.                                                                      | 1.7 | 7         |
| 370 | Synthesis, Properties, and Twoâ€Ðimensional Adsorption Characteristics of [6]Hexaheliceneâ€7 arboxylic<br>acid. Chemistry - A European Journal, 2016, 22, 14633-14639.                                       | 1.7 | 7         |
| 371 | Surface Plasmonâ€Assisted Site‧pecific Cutting of Silver Nanowires Using Femtosecond Laser. Advanced<br>Materials Technologies, 2016, 1, 1600014.                                                            | 3.0 | 7         |
| 372 | Highly controllable direct femtosecond laser writing of gold nanostructures on titanium dioxide surfaces. Nanoscale, 2017, 9, 13025-13033.                                                                   | 2.8 | 7         |
| 373 | Orthogonal Probing of Single-Molecule Heterogeneity by Correlative Fluorescence and Force<br>Microscopy. ACS Nano, 2018, 12, 168-177.                                                                        | 7.3 | 7         |
| 374 | Facilitating Tip-Enhanced Raman Scattering on Dielectric Substrates via Electrical Cutting of Silver<br>Nanowire Probes. Journal of Physical Chemistry Letters, 2018, 9, 7117-7122.                          | 2.1 | 7         |
| 375 | Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers. Beilstein Journal of Nanotechnology, 2020, 11, 1291-1302.                                      | 1.5 | 7         |
| 376 | Double Lamellar Morphologies and Odd–Even Effects in Two- and Three-Dimensional<br><i>N</i> , <i>N</i> ′-bis( <i>n</i> -alkyl)-naphthalenediimide Materials. Chemistry of Materials, 2021, 33,<br>8800-8811. | 3.2 | 7         |
| 377 | Chiral non-periodic surface-confined molecular nanopatterns revealed by scanning tunnelling microscopy. CrystEngComm, 2011, 13, 5578.                                                                        | 1.3 | 6         |
| 378 | Manifestations of Nonâ€Planar Adsorption Geometries of Lead Pyrenocyanine at the Liquidâ€Solid<br>Interface. Chemistry - an Asian Journal, 2013, 8, 2497-2505.                                               | 1.7 | 6         |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Study of hole mobility in poly(N-vinylcarbazole) films doped with CdSe/ZnS quantum dots<br>encapsulated by 11-(N-carbazolyl) undecanoic acid (C11). Journal of Applied Physics, 2013, 114, 173704.                                           | 1.1 | 6         |
| 380 | Alkoxylated dehydrobenzo[12]annulene on Au(111): from single molecules to quantum dot molecular networks. Chemical Communications, 2015, 51, 10917-10920.                                                                                    | 2.2 | 6         |
| 381 | On the stability of surface-confined nanoporous molecular networks. Journal of Chemical Physics, 2015, 142, 101932.                                                                                                                          | 1.2 | 6         |
| 382 | Construction of cyclic arrays of Zn-porphyrin units and their guest binding at the solid–liquid<br>interface. Chemical Communications, 2016, 52, 14419-14422.                                                                                | 2.2 | 6         |
| 383 | Direct observation of the influence of chirality on the microstructure of regioregular poly(3-alkylthiophene)s at the liquid/solid interface. Chemical Communications, 2017, 53, 153-156.                                                    | 2.2 | 6         |
| 384 | Optimization and upscaling of spin coating with organosilane monolayers for low-k pore sealing.<br>Microelectronic Engineering, 2017, 167, 32-36.                                                                                            | 1.1 | 6         |
| 385 | Chirality from scratch: enantioselective adsorption in geometrically controlled lateral nanoconfinement. Chemical Communications, 2021, 57, 61-64.                                                                                           | 2.2 | 6         |
| 386 | Doping of graphene <i>via</i> adlayer formation of electrochemically reduced dibenzyl viologen.<br>Journal of Materials Chemistry C, 2022, 10, 2696-2702.                                                                                    | 2.7 | 6         |
| 387 | Surface Engineering of Graphite and Graphene by Viologen Self-Assembling: From Global to Local Architectures. Journal of Physical Chemistry C, 2022, 126, 6413-6419.                                                                         | 1.5 | 6         |
| 388 | Thermal Annealing of Graphene Implanted with Mn at Ultralow Energies: From Disordered and<br>Contaminated to Nearly Pristine Graphene. Journal of Physical Chemistry C, 2022, 126, 10494-10505.                                              | 1.5 | 6         |
| 389 | Scanning tunnelling microscopy of a foldamer prototype at the liquid/solid interface: water/Au(111) versus 1-octanol/graphite. New Journal of Chemistry, 2006, 30, 1420.                                                                     | 1.4 | 5         |
| 390 | Shape-Persistent 2D Oligomers. Synfacts, 2007, 2007, 1155-1155.                                                                                                                                                                              | 0.0 | 5         |
| 391 | Zusammenrücken und Stapeln: von atmenden Poren zu dreidimensionaler ionischer<br>Selbstorganisation unter elektrochemischer Kontrolle. Angewandte Chemie, 2014, 126, 13165-13168.                                                            | 1.6 | 5         |
| 392 | Computational insight into the origin of unexpected contrast in chiral markers as revealed by STM.<br>Nanoscale, 2018, 10, 1680-1694.                                                                                                        | 2.8 | 5         |
| 393 | Electrostatically Driven Guest Binding in Self-Assembled Molecular Network of Hexagonal Pyridine<br>Macrocycle at the Liquid/Solid Interface: Symmetry Breaking Induced by Coadsorbed Solvent<br>Molecules. Langmuir, 2019, 35, 15051-15062. | 1.6 | 5         |
| 394 | Host–guest chemistry under confinement: peeking at early self-assembly events. Chemical<br>Communications, 2022, 58, 3138-3141.                                                                                                              | 2.2 | 5         |
| 395 | On the interpretation of excited-state decay data for the determination of the equilibrium constants in compartmentalized systems. Journal of the Chemical Society Chemical Communications, 1995, , 2433.                                    | 2.0 | 4         |
| 396 | α-Terthiophene in non-ionic Triton X-100 micelles: biphotonic creation of its radical cation. Chemical<br>Physics Letters, 1998, 286, 452-456.                                                                                               | 1.2 | 4         |

| #   | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Single molecule detection of macromolecules. Macromolecular Symposia, 2002, 178, 1-10.                                                                                                                                                                                          | 0.4  | 4         |
| 398 | Powered by electrons. Nature Nanotechnology, 2011, 6, 610-611.                                                                                                                                                                                                                  | 15.6 | 4         |
| 399 | Coadsorption of Tb <sup>III</sup> –Porphyrin Double-decker Single-molecule Magnets in a Porous<br>Molecular Network: Toward Controlled Alignment of Single-molecule Magnets on a Carbon Surface.<br>Chemistry Letters, 2016, 45, 286-288.                                       | 0.7  | 4         |
| 400 | Mechanism of Ostwald Ripening in 2D Physisorbed Assemblies at Molecular Time and Length Scale by<br>Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2018, 122, 24380-24385.                                                                                    | 1.5  | 4         |
| 401 | Reversing the Handedness of Selfâ€Assembled Porous Molecular Networks through the Number of<br>Identical Chiral Centres. Angewandte Chemie, 2019, 131, 7815-7820.                                                                                                               | 1.6  | 4         |
| 402 | 2D self-assembly and electronic characterization of oxygen–boron–oxygen-doped chiral graphene<br>nanoribbons. Chemical Communications, 2021, 57, 6031-6034.                                                                                                                     | 2.2  | 4         |
| 403 | MOLECULAR FUNCTIONALIZATION OF 2D MATERIALS. Surface Review and Letters, 2021, 28, 2140002.                                                                                                                                                                                     | 0.5  | 4         |
| 404 | AFM Nanoshaving of Covalently Modified Graphite for Studying Molecular Self-Assembly under<br>Lateral Nanoconfinement. Journal of Physical Chemistry C, 2021, 125, 21624-21634.                                                                                                 | 1.5  | 4         |
| 405 | Expression of Chirality in Physisorbed Monolayers Observed by Scanning Tunneling Microscopy. , 0, , 215-245.                                                                                                                                                                    |      | 4         |
| 406 | All-Optical and One-Color Rewritable Chemical Patterning on Pristine Graphene under Water. Journal of Physical Chemistry Letters, 2022, 13, 3796-3803.                                                                                                                          | 2.1  | 4         |
| 407 | Cover Picture: Two-Dimensional Crystal Engineering: A Four-Component Architecture at a Liquid-Solid<br>Interface (Angew. Chem. Int. Ed. 40/2009). Angewandte Chemie - International Edition, 2009, 48,<br>7267-7267.                                                            | 7.2  | 3         |
| 408 | On the transfer of cooperative self-assembled π-conjugated fibrils to a gold substrate. Chemical Communications, 2011, 47, 9333.                                                                                                                                                | 2.2  | 3         |
| 409 | Immersion transients reveal potential of zero charge of nanoparticle films. Electrochemistry Communications, 2012, 25, 128-131.                                                                                                                                                 | 2.3  | 3         |
| 410 | Triplet harvesting in poly(9â€vinylcarbazole) and poly(9â€(2,3â€epoxypropyl)carbazole) doped with CdSe/ZnS<br>quantum dots encapsulated with 16â€( <i>N</i> â€earbazolyl) hexadecanoic acid ligands. Journal of<br>Polymer Science, Part B: Polymer Physics, 2014, 52, 539-551. | 2.4  | 3         |
| 411 | Scanning probe microscopy induced surface modifications of the topological insulator<br>Bi <sub>2</sub> Te <sub>3</sub> in different environments. Nanotechnology, 2017, 28, 335706.                                                                                            | 1.3  | 3         |
| 412 | Ambient Bistable Single Dipole Switching in a Molecular Monolayer. Angewandte Chemie, 2020, 132,<br>14153-14157.                                                                                                                                                                | 1.6  | 3         |
| 413 | A chemisorbed interfacial layer for seeding atomic layer deposition on graphite. Nanoscale, 2021, 13, 12327-12341.                                                                                                                                                              | 2.8  | 3         |
| 414 | Selfâ€sealing thermoplastic fluoroelastomer enables rapid fabrication of modular microreactors.<br>Nano Select, 2021, 2, 1385-1402.                                                                                                                                             | 1.9  | 3         |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | An Approach to the Synthesis of a Twoâ€Dimensional Polymer Using a Preorganized Hostâ€Guest Network<br>by Selfâ€Assembly at the Liquid/Solid Interface. ChemNanoMat, 2020, 6, 550-559.                                           | 1.5 | 3         |
| 416 | Supramolecular Control of Two-Dimensional Phase Behavior. Chemistry - A European Journal, 2003, 9,<br>1663-1663.                                                                                                                 | 1.7 | 2         |
| 417 | Titelbild: Two-Dimensional Crystal Engineering: A Four-Component Architecture at a Liquid-Solid<br>Interface (Angew. Chem. 40/2009). Angewandte Chemie, 2009, 121, 7403-7403.                                                    | 1.6 | 2         |
| 418 | Molecular Patterning at a Liquid/Solid Interface: The Foldamer Approach. Langmuir, 2011, 27, 13598-13605.                                                                                                                        | 1.6 | 2         |
| 419 | Sealing of low-k dielectric (k=2.0) with self-assembled monolayers (SAMs) for the atomic layer deposition (ALD) of TiN. Materials Research Society Symposia Proceedings, 2013, 1559, 1.                                          | 0.1 | 2         |
| 420 | Switching of Single-Molecule Magnetic Properties of TbIII-Porphyrin Double-Decker Complexes and<br>Observation of Their Supramolecular Structures on a Carbon Surface. Chemistry - A European<br>Journal, 2014, 20, 11237-11237. | 1.7 | 2         |
| 421 | Supramolecular effects in self-assembled monolayers: general discussion. Faraday Discussions, 2017, 204, 123-158.                                                                                                                | 1.6 | 2         |
| 422 | Supramolecular systems at liquid–solid interfaces: general discussion. Faraday Discussions, 2017, 204,<br>271-295.                                                                                                               | 1.6 | 2         |
| 423 | Influence of Heterogeneity on the Chiral Expression of Star-Shaped Conjugated Polymers.<br>Macromolecules, 2020, 53, 9254-9263.                                                                                                  | 2.2 | 2         |
| 424 | Chemical Defectâ€Driven Response on Grapheneâ€Based Chemiresistors for Subâ€ppm Ammonia Detection.<br>Angewandte Chemie, 2022, 134, .                                                                                            | 1.6 | 2         |
| 425 | Organic Femtochemistry: Diradicals, Theory and Experiments. , 0, , 97-112.                                                                                                                                                       |     | 1         |
| 426 | Two-Dimensional Supramolecular Self-Assembly Probed by Scanning Tunneling Microscopy.<br>ChemInform, 2003, 34, no.                                                                                                               | 0.1 | 1         |
| 427 | Dendritic Nucleotides: Interaction with an Aliphatic Acid Monolayer. Chemistry and Biodiversity, 2008, 5, 1675-1682.                                                                                                             | 1.0 | 1         |
| 428 | 2D Crystal Engineering. CrystEngComm, 2011, 13, 5531.                                                                                                                                                                            | 1.3 | 1         |
| 429 | The Effect of Ar/H2 Plasma Pretreatments on Porous K=2.0 Dielectrics for Pore Sealing by Self-Assembled Monolayers Deposition. Solid State Phenomena, 2012, 195, 146-149.                                                        | 0.3 | 1         |
| 430 | Steven Deâ€Feyter. Angewandte Chemie - International Edition, 2016, 55, 32-32.                                                                                                                                                   | 7.2 | 1         |
| 431 | Correlative Atomic Force and Single-Molecule Fluorescence Microscopy of Nucleoprotein Complexes.<br>Methods in Molecular Biology, 2018, 1814, 339-359.                                                                           | 0.4 | 1         |
| 432 | A Scanning Tunneling Microscopy Study on Surface-Supported Imine-Based Covalent Organic<br>Frameworks: a New Design for Robust 2D Materials Microscopy and Microanalysis, 2019, 25, 1478-1479.                                   | 0.2 | 1         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 433 | Preferred Formation of Minority Concomitant Polymorphs in 2D Selfâ€Assembly under Lateral<br>Nanoconfinement. Angewandte Chemie, 2019, 131, 13098-13102.                                                  | 1.6 | 1         |
| 434 | Covalent graphite modification by low-temperature photocatalytic oxidation using a titanium dioxide thin film prepared by atomic layer deposition. Catalysis Science and Technology, 2021, 11, 6724-6731. | 2.1 | 1         |
| 435 | Supermicroscopy: AFM, SNOM, and SXM. , 2004, , 1394-1400.                                                                                                                                                 |     | 1         |
| 436 | Octahydropyrimido[4,5- <i>g</i> ]quinazoline-5,10-diones: their multicomponent synthesis,<br>self-assembly on graphite and electrochemistry. Chemical Communications, 2022, 58, 7686-7689.                | 2.2 | 1         |
| 437 | Adsorptive separation using self-assembly on graphite: from nanoscale to bulk processes. Chemical Science, 2022, 13, 9035-9046.                                                                           | 3.7 | 1         |
| 438 | STM at the Liquid/Solid and Air/Solid Interface: Exploring 2D Phase-Behavior, Templating, and<br>Tip-Induced Reactivity. AIP Conference Proceedings, 2003, , .                                            | 0.3 | 0         |
| 439 | Synthesis and Optical Properties of Polyphenylene Dendrimers Based on Perylenes ChemInform, 2004, 35, no.                                                                                                 | 0.1 | 0         |
| 440 | Frans De Schryver: Forty Years of Photochemistry and Photophysics. ChemPhysChem, 2005, 6, 2215-2217.                                                                                                      | 1.0 | 0         |
| 441 | Supramolecular Chemistry at the Liquid/Solid Interface. Materials Research Society Symposia<br>Proceedings, 2005, 901, 1.                                                                                 | 0.1 | Ο         |
| 442 | Chirality in 2D. , 2006, , 1-35.                                                                                                                                                                          |     | 0         |
| 443 | Probing properties of molecule-based interface systems: general discussion and Discussion of the Concluding Remarks. Faraday Discussions, 2017, 204, 503-530.                                             | 1.6 | Ο         |
| 444 | Preparing macromolecular systems on surfaces: general discussion. Faraday Discussions, 2017, 204,<br>395-418.                                                                                             | 1.6 | 0         |
| 445 | Reactivity on and of Graphene Layers: Scanning Probe Microscopy Reveals. Advances in Atom and<br>Single Molecule Machines, 2018, , 35-61.                                                                 | 0.0 | 0         |
| 446 | Host–Guest Chemistry in Surface-Confined Two-Dimensional Covalent Organic Frameworks. , 2018, ,<br>285-294.                                                                                               |     | 0         |
| 447 | Non-Covalent and Covalent Nanostructured Functionalization of 2D Materials. ECS Meeting<br>Abstracts, 2021, MA2021-01, 649-649.                                                                           | 0.0 | 0         |
| 448 | Nanoscale ordering of the liquid/solid interface using scanning tunneling microscopy. SPIE<br>Newsroom, 2006, , .                                                                                         | 0.1 | 0         |
| 449 | (Invited) Covalent Functionalization of Graphene and MoS2 : Towards Nanometer Scale Chemical Patterning. ECS Meeting Abstracts, 2021, MA2021-02, 607-607.                                                 | 0.0 | 0         |
| 450 | Selfâ€templated covalent functionalization of graphitic surfaces with a quasiâ€periodic pattern.<br>Aggregate, 0, , .                                                                                     | 5.2 | 0         |

| #   | Article                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 451 | (Invited, Digital Presentation) Molecular Self-assembly and Reactivity on 2D Layered Materials. ECS<br>Meeting Abstracts, 2022, MA2022-01, 860-860. | 0.0 | 0         |