
William Barbazuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2830381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spiny mouse (Acomys): an emerging research organism for regenerative medicine with applications beyond the skin. Npj Regenerative Medicine, 2021, 6, 1.	2.5	48
2	Biological features between miRNAs and their targets are unveiled from deep learning models. Scientific Reports, 2021, 11, 23825.	1.6	0
3	Jasmonate induced alternative splicing responses in <i>Arabidopsis</i> . Plant Direct, 2020, 4, e00245.	0.8	11
4	The Genetic Regulation of Alternative Splicing in Populus deltoides. Frontiers in Plant Science, 2020, 11, 590.	1.7	5
5	Targeted amplicon sequencing of 40 nuclear genes supports a single introduction and rapid radiation of Hawaiian Metrosideros (Myrtaceae). Plant Systematics and Evolution, 2019, 305, 961-974.	0.3	15
6	Deep expression analysis reveals distinct cold-response strategies in rubber tree (Hevea brasiliensis). BMC Genomics, 2019, 20, 455.	1.2	19
7	Comparative transcriptomic analysis of dermal wound healing reveals de novo skeletal muscle regeneration in Acomys cahirinus. PLoS ONE, 2019, 14, e0216228.	1.1	27
8	Spaceflight-induced alternative splicing during seedling development in Arabidopsis thaliana. Npj Microgravity, 2019, 5, 9.	1.9	31
9	RNA Binding Motif Protein 48 Is Required for U12 Splicing and Maize Endosperm Differentiation. Plant Cell, 2019, 31, 715-733.	3.1	27
10	The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17081-17089.	3.3	134
11	The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. Scientific Reports, 2019, 9, 18181.	1.6	79
12	Computational analysis of alternative splicing in plant genomes. Gene, 2019, 685, 186-195.	1.0	9
13	A Robust Methodology for Assessing Differential Homeolog Contributions to the Transcriptomes of Allopolyploids. Genetics, 2018, 210, 883-894.	1.2	21
14	The maize W22 genome provides a foundation for functional genomics and transposon biology. Nature Genetics, 2018, 50, 1282-1288.	9.4	183
15	Aberrant splicing in maize <i>rough endosperm3</i> reveals a conserved role for U12 splicing in eukaryotic multicellular development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2195-E2204.	3.3	38
16	Detecting alternatively spliced transcript isoforms from singleâ€molecule longâ€read sequences without a reference genome. Molecular Ecology Resources, 2017, 17, 1243-1256.	2.2	126
17	Evolutionarily Conserved Alternative Splicing Across Monocots. Genetics, 2017, 207, 465-480.	1.2	47
18	Population genomics of the eastern cottonwood (<i>Populus deltoides</i>). Ecology and Evolution, 2017. 7. 9426-9440	0.8	55

William Barbazuk

#	Article	IF	CITATIONS
19	Evolution of the 3R-MYB Gene Family in Plants. Genome Biology and Evolution, 2017, 9, 1013-1029.	1.1	50
20	Genome Sequences of Mycobacteriophages Findley, Hurricane, and TBond007. Genome Announcements, 2017, 5, .	0.8	0
21	Cellular events during scarâ€free skin regeneration in the spiny mouse, <i>Acomys</i> . Wound Repair and Regeneration, 2016, 24, 75-88.	1.5	78
22	Genome-Wide Identification of Evolutionarily Conserved Alternative Splicing Events in Flowering Plants. Frontiers in Bioengineering and Biotechnology, 2015, 3, 33.	2.0	138
23	A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys. PLoS ONE, 2015, 10, e0142931.	1.1	70
24	MarkerMiner 1.0: A new application for phylogenetic marker development using angiosperm transcriptomes. Applications in Plant Sciences, 2015, 3, 1400115.	0.8	156
25	Primers for lowâ€copy nuclear genes in <i>Metrosideros</i> and crossâ€amplification in Myrtaceae. Applications in Plant Sciences, 2014, 2, 1400049.	0.8	10
26	Adaptive expansion of the maize maternally expressed gene (Meg) family involves changes in expression patterns and protein secondary structures of its members. BMC Plant Biology, 2014, 14, 204.	1.6	16
27	Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations. BMC Evolutionary Biology, 2013, 13, 35.	3.2	36
28	Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm <i>Amborella</i> . Science, 2013, 342, 1516-1517.	6.0	89
29	Validation of reference transcripts in strawberry (Fragaria spp.). Molecular Genetics and Genomics, 2013, 288, 671-681.	1.0	34
30	Primers for Low-Copy Nuclear Genes in the Hawaiian Endemic Clermontia (Campanulaceae) and Cross-Amplification in Lobelioideae. Applications in Plant Sciences, 2013, 1, 1200450.	0.8	3
31	A genome-enabled, high-throughput, and multiplexed fingerprinting platform for strawberry (Fragaria) Tj ETQq1 I	l 0,78431 1.0	4 rgBT /Ove ₽⁄
32	The potential of genomics in plant systematics. Taxon, 2013, 62, 886-898.	0.4	67
33	Inside Arbuscular Mycorrhizal Roots – Molecular Probes to Understand the Symbiosis. Plant Genome, 2013, 6, plantgenome2012.06.0007.	1.6	19
34	The Early Stages of Polyploidy: Rapid and Repeated Evolution in Tragopogon. , 2012, , 271-292.		36
35	Exploring Diversification and Genome Size Evolution in Extant Gymnosperms through Phylogenetic Synthesis. Journal of Botany, 2012, 2012, 1-6.	1.2	40
36	Rapid, Repeated, and Clustered Loss of Duplicate Genes in Allopolyploid Plant Populations of Independent Origin. Current Biology, 2012, 22, 248-252.	1.8	159

William Barbazuk

#	Article	IF	CITATIONS
37	SNP Discovery by Transcriptome Pyrosequencing. Methods in Molecular Biology, 2011, 729, 225-246.	0.4	18
38	Transcriptomic Shock Generates Evolutionary Novelty in a Newly Formed, Natural Allopolyploid Plant. Current Biology, 2011, 21, 551-556.	1.8	192
39	Silencing of Soybean Seed Storage Proteins Results in a Rebalanced Protein Composition Preserving Seed Protein Content without Major Collateral Changes in the Metabolome and Transcriptome Â. Plant Physiology, 2011, 156, 330-345.	2.3	135
40	Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (<i>Vitis vinifera</i> L.). Proteomics, 2010, 10, 2057-2064.	1.3	69
41	Repeat subtraction-mediated sequence capture from a complex genome. Plant Journal, 2010, 62, 898-909.	2.8	89
42	Characterization of duplicate gene evolution in the recent natural allopolyploid <i>Tragopogon miscellus</i> by nextâ€generation sequencing and Sequenom iPLEX MassARRAY genotyping. Molecular Ecology, 2010, 19, 132-146.	2.0	167
43	A Transcript Accounting from Diverse Tissues of a Cultivated Strawberry. Plant Genome, 2010, 3, .	1.6	22
44	High-Throughput Genetic Mapping of Mutants via Quantitative Single Nucleotide Polymorphism Typing. Genetics, 2010, 184, 19-26.	1.2	66
45	A conserved alternative splicing event in plants reveals an ancient exonization of 5S rRNA that regulates TFIIIA. RNA Biology, 2010, 7, 397-402.	1.5	13
46	Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content. PLoS Genetics, 2009, 5, e1000734.	1.5	484
47	Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA. Genome Research, 2009, 19, 913-921.	2.4	34
48	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	6.0	3,612
49	Sequencing Genes and Gene Islands by Gene Enrichment. , 2009, , 673-689.		1
50	Molecular Markers. Biotechnology in Agriculture and Forestry, 2009, , 231-240.	0.2	0
51	Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics, 2008, 9, 160.	1.2	283
52	The <i>Physcomitrella</i> Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008, 319, 64-69.	6.0	1,712
53	Genome-wide analyses of alternative splicing in plants: Opportunities and challenges. Genome Research, 2008, 18, 1381-1392.	2.4	348
54	Natural Variation for Alleles Under Epigenetic Control by the Maize Chromomethylase <i>Zmet2</i> . Genetics, 2007, 177, 749-760.	1.2	31

#	Article	IF	CITATIONS
55	SNP discovery via 454 transcriptome sequencing. Plant Journal, 2007, 51, 910-918.	2.8	361
56	The TIGR Maize Database. Nucleic Acids Research, 2006, 34, D771-D776.	6.5	35
57	Uneven chromosome contraction and expansion in the maize genome. Genome Research, 2006, 16, 1241-1251.	2.4	105
58	Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Research, 2006, 17, 69-73.	2.4	321
59	Extension of Lander-Waterman theory for sequencing filtered DNA libraries. BMC Bioinformatics, 2005, 6, 245.	1.2	20
60	Reduced representation sequencing: A success in maize and a promise for other plant genomes. BioEssays, 2005, 27, 839-848.	1.2	41
61	Utility of Different Gene Enrichment Approaches Toward Identifying and Sequencing the Maize Gene Space. Plant Physiology, 2004, 136, 3023-3033.	2.3	41
62	Sequence and Comparative Analysis of the Maize NB Mitochondrial Genome. Plant Physiology, 2004, 136, 3486-3503.	2.3	279
63	An Integrated Physical and Genetic Map of the Rice Genome. Plant Cell, 2002, 14, 537-545.	3.1	422
64	Phylotranscriptomics Illuminates the Placement of Whole Genome Duplications and Gene Retention in Ferns. Frontiers in Plant Science, 0, 13, .	1.7	10