Samantha Gruenheid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2830003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissecting virulence: Systematic and functional analyses of a pathogenicity island. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3597-3602.	7.1	557
2	Natural Resistance to Infection with Intracellular Pathogens: The <i>Nramp1</i> Protein Is Recruited to the Phagosome. Journal of Experimental Medicine, 1997, 185, 717-730.	8.5	425
3	Intestinal infection triggers Parkinson's disease-like symptoms in Pink1â^'/â^' mice. Nature, 2019, 571, 565-569.	27.8	347
4	Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biology, 2001, 3, 856-859.	10.3	339
5	Microbial pathogenesis and cytoskeletal function. Nature, 2003, 422, 775-781.	27.8	293
6	Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Molecular Microbiology, 2004, 51, 1233-1249.	2.5	205
7	Molecular Analysis as an Aid To Assess the Public Health Risk of Non-O157 Shiga Toxin-Producing <i>Escherichia coli</i> Strains. Applied and Environmental Microbiology, 2008, 74, 2153-2160.	3.1	172
8	Regulation of Type III Secretion Hierarchy of Translocators and Effectors in Attaching and Effacing Bacterial Pathogens. Infection and Immunity, 2005, 73, 2135-2146.	2.2	156
9	The Nramp1 Protein and Its Role in Resistance to Infection and Macrophage Function. Proceedings of the Association of American Physicians, 1999, 111, 283-289.	2.0	133
10	Gut Feelings: EnteropathogenicE. coli(EPEC) Interactions with the Host. Annual Review of Cell and Developmental Biology, 2000, 16, 173-189.	9.4	119
11	Resistance to antimicrobial peptides in Gram-negative bacteria. FEMS Microbiology Letters, 2012, 330, 81-89.	1.8	119
12	The Bacterial Virulence Factor NleA Inhibits Cellular Protein Secretion by Disrupting Mammalian COPII Function. Cell Host and Microbe, 2007, 2, 160-171.	11.0	96
13	The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic <i>Escherichia coli</i> . Cellular Microbiology, 2010, 12, 31-41.	2.1	91
14	OmpT Outer Membrane Proteases of Enterohemorrhagic and Enteropathogenic Escherichia coli Contribute Differently to the Degradation of Human LL-37. Infection and Immunity, 2012, 80, 483-492.	2.2	86
15	R-Spondin 2 signalling mediates susceptibility to fatal infectious diarrhoea. Nature Communications, 2013, 4, 1898.	12.8	65
16	Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping. Frontiers in Microbiology, 2018, 9, 836.	3.5	53
17	A Syst-OMICS Approach to Ensuring Food Safety and Reducing the Economic Burden of Salmonellosis. Frontiers in Microbiology, 2017, 8, 996.	3.5	42
18	The CpxRA Two-Component System Is Essential for Citrobacter rodentium Virulence. Infection and Immunity, 2015, 83, 1919-1928.	2.2	31

SAMANTHA GRUENHEID

#	Article	IF	CITATIONS
19	Enterobacteria and host resistance to infection. Mammalian Genome, 2018, 29, 558-576.	2.2	31
20	Enterohemorrhagic and enteropathogenic Escherichia coli evolved different strategies to resist antimicrobial peptides. Gut Microbes, 2012, 3, 556-561.	9.8	27
21	Role of uropathogenic <i>Escherichia coli</i> OmpT in the resistance against human cathelicidin LL-37. FEMS Microbiology Letters, 2013, 345, 64-71.	1.8	27
22	An outer membrane protease of the omptin family prevents activation of the <i>Citrobacter rodentium</i> PhoPQ twoâ€component system by antimicrobial peptides. Molecular Microbiology, 2009, 74, 98-111.	2.5	26
23	Sec24 interaction is essential for localization and virulenceâ€associated function of the bacterial effector protein NleA. Cellular Microbiology, 2012, 14, 1206-1218.	2.1	23
24	The Salmonella enterica Plasmidome as a Reservoir of Antibiotic Resistance. Microorganisms, 2020, 8, 1016.	3.6	23
25	Inhibition of Outer Membrane Proteases of the Omptin Family by Aprotinin. Infection and Immunity, 2015, 83, 2300-2311.	2.2	22
26	Identification and characterization of OmpTâ€like proteases in uropathogenic <i>Escherichia coli</i> clinical isolates. MicrobiologyOpen, 2019, 8, e915.	3.0	22
27	Culture-Dependent Bioprospecting of Bacterial Isolates From the Canadian High Arctic Displaying Antibacterial Activity. Frontiers in Microbiology, 2019, 10, 1836.	3.5	22
28	Perturbation of Host Cell Cytoskeleton by Cranberry Proanthocyanidins and Their Effect on Enteric Infections. PLoS ONE, 2011, 6, e27267.	2.5	22
29	R-Spondins Are Expressed by the Intestinal Stroma and are Differentially Regulated during Citrobacter rodentium- and DSS-Induced Colitis in Mice. PLoS ONE, 2016, 11, e0152859.	2.5	21
30	PmrC (EptA) and CptA Negatively Affect Outer Membrane Vesicle Production in Citrobacter rodentium. Journal of Bacteriology, 2019, 201, .	2.2	19
31	The inhibition of COPII trafficking is important for intestinal epithelial tight junction disruption during enteropathogenic Escherichia coli and Citrobacter rodentium infection. Microbes and Infection, 2013, 15, 738-744.	1.9	16
32	Identification of Potentially Diarrheagenic Atypical Enteropathogenic Escherichia coli Strains Present in Canadian Food Animals at Slaughter and in Retail Meats. Applied and Environmental Microbiology, 2013, 79, 3892-3896.	3.1	16
33	Systematic Analysis of Two-Component Systems in Citrobacter rodentium Reveals Positive and Negative Roles in Virulence. Infection and Immunity, 2017, 85, .	2.2	16
34	Loss of disease tolerance during Citrobacter rodentium infection is associated with impaired epithelial differentiation and hyperactivation of T cell responses. Scientific Reports, 2018, 8, 847.	3.3	15
35	The bacterial virulence factor NleA's involvement in intestinal tight junction disruption during EnteropathogenicE. coliinfection is independent of its putative PDZ binding domain. Gut Microbes, 2010, 1, 114-118.	9.8	14
36	Antimicrobial Peptide Conformation as a Structural Determinant of Omptin Protease Specificity. Journal of Bacteriology, 2015, 197, 3583-3591.	2.2	14

#	Article	IF	CITATIONS
37	Characterization of the intestinal microbiota during <i>Citrobacter rodentium</i> infection in a mouse model of infection-triggered Parkinson's disease. Gut Microbes, 2020, 12, 1830694.	9.8	14
38	The Virulence Effect of CpxRA in Citrobacter rodentium Is Independent of the Auxiliary Proteins NlpE and CpxP. Frontiers in Cellular and Infection Microbiology, 2018, 8, 320.	3.9	11
39	Engineering surgical stitches to prevent bacterial infection. Scientific Reports, 2022, 12, 834.	3.3	9
40	Microbes and Parkinson's disease: from associations to mechanisms. Trends in Microbiology, 2022, 30, 749-760.	7.7	9
41	MicroRNA-9 Fine-Tunes Dendritic Cell Function by Suppressing Negative Regulators in a Cell-Type-Specific Manner. Cell Reports, 2020, 31, 107585.	6.4	8
42	The Cri1 locus is the common genetic cause of susceptibility to <i>Citrobacter rodentium</i> infection in C3H and FVB mouse strains Gut Microbes, 2011, 2, 173-177.	9.8	6
43	A Mediterranean-like fat blend protects against the development of severe colitis in the mucin-2 deficient murine model. Gut Microbes, 2022, 14, 2055441.	9.8	4