Susan T Sharfstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2829889/publications.pdf Version: 2024-02-01

6

#	Article	IF	CITATIONS
1	Alginate Hydrogel Microtubes for Salivary Gland Cell Organization and Cavitation. Bioengineering, 2022, 9, 38.	1.6	7
2	Multiplex genome editing of mammalian cells for producing recombinant heparin. Metabolic Engineering, 2022, 70, 155-165.	3.6	5
3	Evaluation of site-specific methylation of the CMV promoter and its role in CHO cell productivity of a recombinant monoclonal antibody. Antibody Therapeutics, 2022, 5, 121-129.	1.2	2
4	Engineering cryoelectrospun elastin-alginate scaffolds to serve as stromal extracellular matrices. Biofabrication, 2022, 14, 035010.	3.7	4
5	PTSelectâ,"¢: A post-transcriptional technology that enables rapid establishment of stable CHO cell lines and surveillance of clonal variation. Journal of Biotechnology, 2021, 325, 360-371.	1.9	3
6	Highâ€ŧhroughput and automation advances for accelerating singleâ€ɛell cloning, monoclonality and early phase clone screening steps in mammalian cell line development for biologics production. Biotechnology Progress, 2021, 37, e3208.	1.3	8
7	Insulin production from hiPSCâ€derived pancreatic cells in a novel wicking matrix bioreactor. Biotechnology and Bioengineering, 2020, 117, 2247-2261.	1.7	2
8	Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter. Current Research in Biotechnology, 2019, 1, 49-57.	1.9	12
9	Proteogenomic Annotation of Chinese Hamsters Reveals Extensive Novel Translation Events and Endogenous Retroviral Elements. Journal of Proteome Research, 2019, 18, 2433-2445.	1.8	15
10	Applications of Nanotechnology to Bioprocessing. , 2019, , 712-730.		0
11	Non-protein biologic therapeutics. Current Opinion in Biotechnology, 2018, 53, 65-75.	3.3	18
12	Glycoengineering in CHO Cells: Advances in Systems Biology. Biotechnology Journal, 2018, 13, e1700234.	1.8	51
13	<i>In silico</i> characterization of enantioselective molecularly imprinted binding sites. Journal of Molecular Recognition, 2018, 31, e2612.	1.1	10
14	Metabolic engineering of mammalian cells to produce heparan sulfates. Emerging Topics in Life Sciences, 2018, 2, 443-452.	1.1	4
15	Reactivity of deposited byproducts generated from ZrO2 atomic layer deposition. Journal of Loss Prevention in the Process Industries, 2017, 45, 78-87.	1.7	1
16	The â€~Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity. Methods in Molecular Biology, 2017, 1603, 153-168.	0.4	10
17	Biosimilars: Imitation Games. ACS Medicinal Chemistry Letters, 2017, 8, 690-693.	1.3	6

18 Industrial Production of Glycosaminoglycans. , 2017, , .

SUSAN T SHARFSTEIN

#	Article	IF	CITATIONS
19	Heparin: Past, Present, and Future. Pharmaceuticals, 2016, 9, 38.	1.7	181
20	TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor. Scientific Reports, 2016, 6, 38319.	1.6	44
21	Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers. Journal of Molecular Modeling, 2016, 22, 139.	0.8	18
22	Omics insights into productionâ \in scale bioreactors. Biotechnology Journal, 2016, 11, 1124-1125.	1.8	2
23	Bioengineered glaucomatous 3D human trabecular meshwork as an in vitro disease model. Biotechnology and Bioengineering, 2016, 113, 1357-1368.	1.7	42
24	Optimization of bioprocess conditions improves production of a CHO cellâ€derived, bioengineered heparin. Biotechnology Journal, 2015, 10, 1067-1081.	1.8	26
25	A Closer Look at Schlemm's Canal Cell Physiology: Implications for Biomimetics. Journal of Functional Biomaterials, 2015, 6, 963-985.	1.8	27
26	A biomimetic Schlemm's canal inner wall: A model to study outflow physiology, glaucoma pathology and high-throughput drug screening. Biomaterials, 2015, 65, 86-92.	5.7	22
27	Modulation of heparan sulfate biosynthesis by sodium butyrate in recombinant CHO cells. Cytotechnology, 2015, 67, 223-235.	0.7	4
28	Role of epigenetics in expression of recombinant proteins from mammalian cells. Pharmaceutical Bioprocessing, 2014, 2, 403-419.	0.8	11
29	Microarray platform affords improved product analysis in mammalian cell growth studies. Biotechnology Journal, 2014, 9, 386-395.	1.8	7
30	Reduced Culture Temperature Differentially Affects Expression and Biophysical Properties of Monoclonal Antibody Variants. Antibodies, 2014, 3, 253-271.	1.2	17
31	Bioengineering murine mastocytoma cells to produce anticoagulant heparin. Glycobiology, 2014, 24, 272-280.	1.3	14
32	Walking through trabecular meshwork biology: Toward engineering design of outflow physiology. Biotechnology Advances, 2014, 32, 971-983.	6.0	36
33	Bioengineered Chinese Hamster Ovary Cells with Golgi-targeted 3-O-Sulfotransferase-1 Biosynthesize Heparan Sulfate with an Antithrombin-binding Site. Journal of Biological Chemistry, 2013, 288, 37308-37318.	1.6	27
34	An 'omics approach towards CHO cell engineering. Biotechnology and Bioengineering, 2013, 110, 1255-1271.	1.7	106
35	Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnology and Bioengineering, 2013, 110, 3205-3218.	1.7	51
36	Toward a bioengineered heparin. Bioengineered, 2012, 3, 227-231.	1.4	11

3

SUSAN T SHARFSTEIN

#	Article	IF	CITATIONS
37	Highâ€Throughput Transfection of Interfering RNA into a 3D Cellâ€Culture Chip. Small, 2012, 8, 2091-2098.	5.2	13
38	Identifying bottlenecks in transient and stable production of recombinant monoclonalâ€antibody sequence variants in chinese hamster ovary cells. Biotechnology Progress, 2012, 28, 846-855.	1.3	38
39	Metabolic engineering of Chinese hamster ovary cells: Towards a bioengineered heparin. Metabolic Engineering, 2012, 14, 81-90.	3.6	67
40	Effects of clonal variation on growth, metabolism, and productivity in response to trophic factor stimulation: a study of Chinese hamster ovary cells producing a recombinant monoclonal antibody. Cytotechnology, 2012, 64, 27-41.	0.7	17
41	Applications of Nanotechnology to Bioprocessing. , 2012, , 323-366.		О
42	Observations of cell size dynamics under osmotic stress. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 560-569.	1.1	46
43	Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Analytical Biochemistry, 2011, 415, 59-66.	1.1	66
44	A flexible state-space approach for the modeling of metabolic networks I: Development of mathematical methods. Metabolic Engineering, 2011, 13, 125-137.	3.6	6
45	A flexible state-space approach for the modeling of metabolic networks II: Advanced interrogation of hybridoma metabolism. Metabolic Engineering, 2011, 13, 138-149.	3.6	1
46	Transcriptomic responses to sodium chlorideâ€induced osmotic stress: A study of industrial fedâ€batch CHO cell cultures. Biotechnology Progress, 2010, 26, 1104-1115.	1.3	50
47	On the dynamic modeling of mammalian cell metabolism and mAb production. Computers and Chemical Engineering, 2010, 34, 210-222.	2.0	14
48	Gene Delivery in Three-Dimensional Cell Cultures by Superparamagnetic Nanoparticles. ACS Nano, 2010, 4, 4733-4743.	7.3	80
49	Characterization of gene localization and accessibility in DHFRâ€amplified CHO cells. Biotechnology Progress, 2009, 25, 296-300.	1.3	6
50	The effects of microcarrier culture on recombinant CHO cells under biphasic hypothermic culture conditions. Cytotechnology, 2009, 59, 81-91.	0.7	13
51	Parallel Synthesis and Screening of Polymers for Nonviral Gene Delivery. Molecular Pharmaceutics, 2009, 6, 86-97.	2.3	55
52	Sodium butyrate stimulates monoclonal antibody overâ€expression in CHO cells by improving gene accessibility. Biotechnology and Bioengineering, 2008, 100, 189-194.	1.7	95
53	The effects of culture conditions on the glycosylation of secreted human placental alkaline phosphatase produced in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2008, 100, 1178-1192.	1.7	62
54	Hyperosmotic Stress in Murine Hybridoma Cells: Effects on Antibody Transcription, Translation, Posttranslational Processing, and the Cell Cycle. Biotechnology Progress, 2008, 20, 576-589.	1.3	34

SUSAN T SHARFSTEIN

#	Article	IF	CITATIONS
55	Cell Attachment to Microcarriers Affects Growth, Metabolic Activity, and Culture Productivity in Bioreactor Culture. Biotechnology Progress, 2008, 23, 652-660.	1.3	29
56	Optimized Removal of Soluble Host Cell Proteins for the Recovery of met-Human Growth Hormone Inclusion Bodies from Escherichia coli Cell Lysate Using Crossflow Microfiltration. Biotechnology Progress, 2008, 23, 667-672.	1.3	15
57	Advances in Cell Culture Process Development: Tools and Techniques for Improving Cell Line Development and Process Optimization. Biotechnology Progress, 2008, 24, 727-734.	1.3	7
58	Molecular Response to Osmotic Shock. Cell Engineering, 2007, , 213-236.	0.4	4
59	Regulation of Recombinant Monoclonal Antibody Production in Chinese Hamster Ovary Cells: A Comparative Study of Gene Copy Number, mRNA Level, and Protein Expression. Biotechnology Progress, 2006, 22, 313-318.	1.3	91
60	Genome-wide analysis of the transcriptional response of murine hybridomas to osmotic shock. Biotechnology and Bioengineering, 2006, 93, 132-145.	1.7	36
61	Techniques for Dual Staining of DNA and Intracellular Immunoglobulins in Murine Hybridoma Cells: Applications to Cell-Cycle Analysis of Hyperosmotic Cultures. Cytotechnology, 2005, 48, 15-26.	0.7	5
62	Reproducibility of the high-performance liquid chromatographic fingerprints obtained from two soybean cultivars and a selected progeny. Journal of Chromatography A, 2001, 915, 61-74.	1.8	18
63	Modulation of the phosphate-starvation response in Escherichia coli by genetic manipulation of the polyphosphate pathways. , 2000, 51, 434-438.		10
64	Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Therapy, 1999, 6, 785-791.	2.3	356
65	Effect of extracellular glutamine concentration on primary and secondary metabolism of a murine hybridoma: An in vivo13C nuclear magnetic resonance study. Biotechnology and Bioengineering, 1998, 57, 172-186.	1.7	28
66	Modulation of the phosphate-starvation response in Escherichia coli by genetic manipulation of the polyphosphate pathways. , 1996, 51, 434.		6
67	Quantitative in vivo nuclear magnetic resonance studies of hybridoma metabolism. Biotechnology and Bioengineering, 1994, 43, 1059-1074.	1.7	86
68	Examination of primary metabolic pathways in a murine hybridoma with carbon-13 nuclear magnetic resonance spectroscopy. Biotechnology and Bioengineering, 1994, 44, 563-585.	1.7	98
69	Polyphosphate Metabolism in <i>Escherichia coli</i> . Annals of the New York Academy of Sciences, 1994, 745, 77-91.	1.8	24
70	Functional differentiation and primary metabolism of mouse mammary epithelial cells in extended-batch and hollow-fiber culture. Biotechnology and Bioengineering, 1992, 40, 672-680.	1.7	0
71	A novel technique for determining magnet cleanliness - NMR spectroscopy. IEEE Transactions on Magnetics, 1987, 23, 3602-3604.	1.2	0