Hemraj Dodiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2829674/publications.pdf

Version: 2024-02-01

25 papers 4,300 citations

331670
21
h-index

24 g-index

25 all docs

25 docs citations

25 times ranked

5659 citing authors

#	Article	IF	CITATIONS
1	Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain, 2013, 136, 2419-2431.	7.6	965
2	Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson's Disease. PLoS ONE, 2011, 6, e28032.	2.5	689
3	Is alphaâ€synuclein in the colon a biomarker for premotor Parkinson's Disease? Evidence from 3 cases. Movement Disorders, 2012, 27, 716-719.	3.9	383
4	Alphaâ€synuclein in colonic submucosa in early untreated Parkinson's disease. Movement Disorders, 2012, 27, 709-715.	3.9	381
5	Alterations in lysosomal and proteasomal markers in Parkinson's disease: Relationship to alpha-synuclein inclusions. Neurobiology of Disease, 2009, 35, 385-398.	4.4	360
6	Role of TLR4 in the gut-brain axis in Parkinson's disease: a translational study from men to mice. Gut, 2019, 68, 829-843.	12.1	290
7	Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease. Neurobiology of Disease, 2020, 135, 104352.	4.4	172
8	Sex-specific effects of microbiome perturbations on cerebral $\hat{Al^2}$ amyloidosis and microglia phenotypes. Journal of Experimental Medicine, 2019, 216, 1542-1560.	8.5	165
9	The gut-brain axis in Parkinson's disease: Possibilities for food-based therapies. European Journal of Pharmacology, 2017, 817, 86-95.	3.5	155
10	Transfer of host-derived alpha synuclein to grafted dopaminergic neurons in rat. Neurobiology of Disease, 2011, 43, 552-557.	4.4	149
11	Differential Transduction Following Basal Ganglia Administration of Distinct Pseudotyped AAV Capsid Serotypes in Nonhuman Primates. Molecular Therapy, 2010, 18, 579-587.	8.2	82
12	Gut bacterial composition in a mouse model of Parkinson's disease. Beneficial Microbes, 2018, 9, 799-814.	2.4	72
13	The Potential Role of Gut-Derived Inflammation in Multiple System Atrophy. Journal of Parkinson's Disease, 2017, 7, 331-346.	2.8	68
14	Gut–brain and brain–gut axis in Parkinson's disease models: Effects of a uridine and fish oil diet. Nutritional Neuroscience, 2018, 21, 391-402.	3.1	68
15	Gut microbiota–driven brain Aβ amyloidosis in mice requires microglia. Journal of Experimental Medicine, 2022, 219, .	8.5	44
16	Cell Transplantation and Gene Therapy in Parkinson's Disease. Mount Sinai Journal of Medicine, 2011, 78, 126-158.	1.9	43
17	Alcohol Feeding in Mice Promotes Colonic Hyperpermeability and Changes in Colonic Organoid Stem Cell Fate. Alcoholism: Clinical and Experimental Research, 2017, 41, 2100-2113.	2.4	37
18	Human Neural Stem Cells Survive Long Term in the Midbrain of Dopamine-Depleted Monkeys After GDNF Overexpression and Project Neurites Toward an Appropriate Target. Stem Cells Translational Medicine, 2014, 3, 692-701.	3.3	36

#	Article	IF	CITATION
19	NPT088 reduces both amyloidâ $\hat{\epsilon_i}^2$ and tau pathologies in transgenic mice. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2016, 2, 141-155.	3.7	36
20	Future of Probiotics and Prebiotics and the Implications for Early Career Researchers. Frontiers in Microbiology, 2020, 11, 1400.	3.5	30
21	Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats. PLoS ONE, 2018, 13, e0190078.	2.5	25
22	Enduring cortical alterations after a single in-vivo treatment of HIV-1 Tat. NeuroReport, 2012, 23, 825-829.	1,2	24
23	Neonatal immune-tolerance in mice does not prevent xenograft rejection. Experimental Neurology, 2014, 254, 90-98.	4.1	24
24	Microbiome Medicine: Microbiota in Development and Management of Cardiovascular Diseases. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 1344-1356.	1.2	2
25	P4-213: REDUCTION OF \hat{I}^2 -AMYLOID AND PHOSPHO-TAU IN TRANSGENIC MICE BY A NOVEL FUSION PROTEIN BIVALENT FOR A GENERAL AMYLOID INTERACTION MOTIF (GAIM). , 2014, 10, P866-P866.		O