Hyunjoo Lee

List of Publications by Citations

Source: https://exaly.com/author-pdf/2829613/hyunjoo-lee-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 170
 10,305
 50
 98

 papers
 citations
 h-index
 g-index

 178
 11,921
 9.5
 6.67

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
170	Shaping binary metal nanocrystals through epitaxial seeded growth. <i>Nature Materials</i> , 2007 , 6, 692-7	27	1073
169	Platinum nanoparticle shape effects on benzene hydrogenation selectivity. <i>Nano Letters</i> , 2007 , 7, 3097-	- 1.0:1 5	747
168	Morphological control of catalytically active platinum nanocrystals. <i>Angewandte Chemie -</i> International Edition, 2006 , 45, 7824-8	16.4	572
167	Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2058-62	16.4	537
166	Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5406-7	16.4	383
165	Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. <i>ACS Catalysis</i> , 2017 , 7, 1301-1307	13.1	276
164	Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface of adsorbents. <i>Microporous and Mesoporous Materials</i> , 2001 , 50, 77-90	5.3	247
163	A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. <i>ACS Nano</i> , 2011 , 5, 4084-90	16.7	192
162	Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17694-17699	16.4	186
161	Morphological Control of Catalytically Active Platinum Nanocrystals. <i>Angewandte Chemie</i> , 2006 , 118, 7988-7992	3.6	175
160	Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. <i>Nature Communications</i> , 2017 , 8, 1449	17.4	168
159	Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 625-632	21.8	164
158	A combustion-free methodology for synthesizing zeolites and zeolite-like materials. <i>Nature</i> , 2003 , 425, 385-8	50.4	161
157	Influence of Aspect Ratio of TiO2 Nanorods on the Photocatalytic Decomposition of Formic Acid. Journal of Physical Chemistry C, 2009 , 113, 3050-3055	3.8	157
156	Single-Atom Catalysts of Precious Metals for Electrochemical Reactions. <i>ChemSusChem</i> , 2018 , 11, 104-1	1 833	154
155	The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation. <i>Catalysis Letters</i> , 2009 , 129, 1-6	2.8	149
154	Ultrathin IrO2 Nanoneedles for Electrochemical Water Oxidation. <i>Advanced Functional Materials</i> , 2018 , 28, 1704796	15.6	139

(2011-2019)

153	Investigation of the Support Effect in Atomically Dispersed Pt on WO for Utilization of Pt in the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16038-16042	16.4	133
152	Probing hot electron flow generated on Pt nanoparticles with Au/TiO2 Schottky diodes during catalytic CO oxidation. <i>Nano Letters</i> , 2008 , 8, 2388-92	11.5	128
151	Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. <i>ChemSusChem</i> , 2014 , 7, 451-6	8.3	119
150	Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions. <i>Advanced Energy Materials</i> , 2018 , 8, 1701476	21.8	110
149	Atomically Dispersed Platinum on Gold Nano-Octahedra with High Catalytic Activity on Formic Acid Oxidation. <i>ACS Catalysis</i> , 2013 , 3, 437-443	13.1	110
148	General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. <i>Nature Communications</i> , 2019 , 10, 5193	17.4	109
147	Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia. <i>Green Chemistry</i> , 2011 , 13, 2004	10	105
146	Promoting Effects of Hydrothermal Treatment on the Activity and Durability of Pd/CeO2 Catalysts for CO Oxidation. <i>ACS Catalysis</i> , 2017 , 7, 7097-7105	13.1	100
145	Structure dependent active sites of NixSy as electrocatalysts for hydrogen evolution reaction. <i>Nanoscale</i> , 2015 , 7, 5157-63	7.7	100
144	Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 156-162	13	99
143	Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. <i>Journal of Catalysis</i> , 2013 , 306, 146-154	7-3	94
142	Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to Evalerolactone. <i>Applied Catalysis B: Environmental</i> , 2019 , 241, 588-597	21.8	94
141	Fully Dispersed Rh Ensemble Catalyst To Enhance Low-Temperature Activity. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9558-9565	16.4	89
140	Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. <i>Nature Catalysis</i> , 2020 , 3, 368-375	36.5	87
139	Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. <i>Applied Catalysis B: Environmental</i> , 2010 , 97, 108-114	21.8	87
138	Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. <i>Angewandte Chemie</i> , 2016 , 128, 2098-2102	3.6	81
137	Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes. <i>Chemical Communications</i> , 2012 , 48, 9501-3	5.8	80
136	Shape effect of ceria in Cu/ceria catalysts for preferential CO oxidation. <i>Journal of Molecular Catalysis A</i> , 2011 , 335, 82-88		78

135	Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. <i>Catalysis Communications</i> , 2012 , 19, 115-118	3.2	75
134	Enhanced stability of NiHe/GDC solid oxide fuel cell anodes for dry methane fuel. <i>Catalysis Communications</i> , 2010 , 12, 36-39	3.2	73
133	Distinct activation of Cu-MOR for direct oxidation of methane to methanol. <i>Chemical Communications</i> , 2017 , 53, 4116-4119	5.8	71
132	Steam treatment on Ni/EAl2O3 for enhanced carbon resistance in combined steam and carbon dioxide reforming of methane. <i>Applied Catalysis B: Environmental</i> , 2013 , 134-135, 103-109	21.8	71
131	Rational Design of TiC-Supported Single-Atom Electrocatalysts for Hydrogen Evolution and Selective Oxygen Reduction Reactions. <i>ACS Energy Letters</i> , 2019 , 4, 126-132	20.1	69
130	Change in the catalytic reactivity of Pt nanocubes in the presence of different surface-capping agents. <i>Catalysis Communications</i> , 2009 , 10, 1305-1309	3.2	60
129	Highly Water-Resistant La-Doped Co3O4 Catalyst for CO Oxidation. ACS Catalysis, 2019, 9, 10093-10100	13.1	57
128	105 Cyclable Pseudocapacitive Na-Ion Storage of Hierarchically Structured Phosphorus-Incorporating Nanoporous Carbons in Organic Electrolytes. <i>ACS Energy Letters</i> , 2018 , 3, 724	1 27 32	57
127	Facile preparation of high performance visible light sensitive photo-catalysts. <i>Applied Catalysis B: Environmental</i> , 2010 , 94, 241-247	21.8	57
126	Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media. <i>Bioresource Technology</i> , 2017 , 234, 424-431	11	54
125	Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction. <i>Chemical Communications</i> , 2016 , 52, 5641-4	5.8	54
124	Energy-efficient CO hydrogenation with fast response using photoexcitation of CO adsorbed on metal catalysts. <i>Nature Communications</i> , 2018 , 9, 3027	17.4	54
123	Platinum nanoparticles encapsulated by aminopeptidase: a multifunctional bioinorganic nanohybrid catalyst. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11924-9	16.4	54
122	Amine-Functionalized Covalent Organic Framework for Efficient SO Capture with High Reversibility. <i>Scientific Reports</i> , 2017 , 7, 557	4.9	52
121	Spectroscopic study of tetradecyltrimethylammonium bromide Pt-C14TAB nanoparticles: structure and stability. <i>Langmuir</i> , 2009 , 25, 6665-71	4	51
120	Production of high carbon number hydrocarbon fuels from a lignin-derived ⊞-4 phenolic dimer, benzyl phenyl ether, via isomerization of ether to alcohols on high-surface-area silica-alumina aerogel catalysts. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 668-676	21.8	50
119	Electronic structure modification of platinum on titanium nitride resulting in enhanced catalytic activity and durability for oxygen reduction and formic acid oxidation. <i>Applied Catalysis B: Environmental</i> , 2015 , 174-175, 35-42	21.8	50
118	REMOVAL OF COPPER IONS USING FUNCTIONALIZED MESOPOROUS SILICA IN AQUEOUS SOLUTION. Separation Science and Technology, 2001 , 36, 2433-2448	2.5	49

117	Synthesis of biolubricants using sulfated zirconia catalysts. <i>Applied Catalysis A: General</i> , 2013 , 455, 164-	.1₹.11	48
116	Enhanced activity and durability of Ru catalyst dispersed on zirconia for dry reforming of methane. <i>Catalysis Today</i> , 2017 , 293-294, 122-128	5.3	47
115	Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells. <i>Applied Catalysis B: Environmental</i> , 2019 , 247, 142-149	21.8	47
114	Utilization of shape-controlled nanoparticles as catalysts with enhanced activity and selectivity. <i>RSC Advances</i> , 2014 , 4, 41017-41027	3.7	47
113	Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. <i>Journal of CO2 Utilization</i> , 2019 , 31, 244-250	7.6	44
112	Platinum dendrites with controlled sizes for oxygen reduction reaction. <i>Electrochemistry Communications</i> , 2010 , 12, 1596-1599	5.1	43
111	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20691-20696	16.4	38
110	Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. <i>Chemical Communications</i> , 2019 , 55, 6389-6392	5.8	37
109	Shape-Controlled Nanocrystals for Catalytic Applications. Catalysis Surveys From Asia, 2012, 16, 14-27	2.8	37
108	Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode. <i>Chemical Engineering Journal</i> , 2020 , 382, 122946	14.7	37
107	Tuning the band-gap energy of TiO2-xCx nanoparticle for high performance photo-catalyst. <i>Electrochemistry Communications</i> , 2010 , 12, 769-772	5.1	36
106	Palladium Single-Atom Catalysts Supported on C@C3N4 for Electrochemical Reactions. <i>ChemElectroChem</i> , 2019 , 6, 4757-4764	4.3	35
105	Enhancing stability of octahedral PtNi nanoparticles for oxygen reduction reaction by halide treatment. <i>Journal of Power Sources</i> , 2016 , 307, 883-890	8.9	35
104	Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. <i>Catalysis Communications</i> , 2009 , 11, 7-10	3.2	34
103	Selective hydrogenation of furanic aldehydes using Ni nanoparticle catalysts capped with organic molecules. <i>Journal of Catalysis</i> , 2016 , 344, 609-615	7-3	33
102	Investigation of the Support Effect in Atomically Dispersed Pt on WO3¼ for Utilization of Pt in the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 16184-16188	3.6	33
101	Surface Plasmon Aided Ethanol Dehydrogenation Using AgNi Binary Nanoparticles. <i>ACS Catalysis</i> , 2017 , 7, 2294-2302	13.1	32
100	Characterization of photocatalytic performance of silver deposited TiO2 nanorods. <i>Electrochemistry Communications</i> , 2009 , 11, 363-366	5.1	32

99	Zeolite synthesis using degradable structure-directing agents and pore-filling agents. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 2187-91	3.4	32
98	Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. <i>ACS Nano</i> , 2020 , 14, 14355-14374	16.7	32
97	Synthesis of aluminaBarbon composite material for the catalytic conversion of furfural to furfuryl alcohol. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 52, 59-65	6.3	31
96	Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. <i>BMC Chemical Engineering</i> , 2019 , 1,	3.5	31
95	In situ shaping of Pt nanoparticles directly overgrown on carbon supports. <i>Chemical Communications</i> , 2012 ,	5.8	31
94	Surface-specific overgrowth of platinum on shaped gold nanocrystals. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 9759-65	3.6	31
93	Surfactant-assisted synthesis of MgO: Characterization and catalytic activity on the transesterification of dimethyl carbonate with glycerol. <i>Applied Catalysis A: General</i> , 2014 , 484, 33-38	5.1	30
92	Heteropolyacid catalysts for Diels-Alder cycloaddition of 2,5-dimethylfuran and ethylene to renewable p -xylene. <i>Catalysis Today</i> , 2017 , 293-294, 167-175	5.3	29
91	TClickTpreparation of CuPt nanorod-anchored graphene oxide as a catalyst in water. Small, 2012, 8, 316	1 <u>-1</u> 8∡	28
90	Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. <i>Energy and Environmental Science</i> , 2020 , 13, 4921-4929	35.4	28
89	Water-Assisted Selective Hydrodeoxygenation of Lignin-Derived Guaiacol to Monooxygenates. <i>ChemCatChem</i> , 2015 , 7, 2669-2674	5.2	27
88	Enhanced electrocatalytic performance due to anomalous compressive strain and superior electron retention properties of highly porous Pt nanoparticles. <i>Journal of Catalysis</i> , 2012 , 291, 69-78	7.3	26
87	Three-dimensional reduced-symmetry of colloidal plasmonic nanoparticles. <i>Nano Letters</i> , 2012 , 12, 243	61405	26
86	PtRu nano-dandelions on thiolated carbon nanotubes: a new synthetic strategy for supported bimetallic core-shell clusters on the atomic scale. <i>Chemical Communications</i> , 2010 , 46, 2085-7	5.8	26
85	Facile preparation of water soluble CuPt nanorods with controlled aspect ratio and study on their catalytic properties in water. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11956		26
84	Shaped Ni nanoparticles with an unconventional hcp crystalline structure. <i>Chemical Communications</i> , 2014 , 50, 6353-6	5.8	25
83	Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents. <i>Journal of Hazardous Materials</i> , 2014 , 264, 136-43	12.8	25
82	Highly Selective Production of Acrylic Acid from Glycerol via Two Steps Using Au/CeO2 Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 11371-11376	8.3	25

81	Effect of TiO2 nanoparticle shape on hydrogen evolution via water splitting. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1688-91	1.3	25
80	Shape- and Composition-Controlled PtEe©o Nanoparticles for Electrocatalytic Methanol Oxidation. <i>Topics in Catalysis</i> , 2010 , 53, 686-693	2.3	25
79	Cellulose triacetate-based polymer gel electrolytes. <i>Journal of Applied Polymer Science</i> , 2010 , 115, 32-36.	2.9	25
78	Solid-state polymerization and characterization of a copolyamide based on adipic acid, 1,4-butanediamine, and 2,5-furandicarboxylic acid. <i>Journal of Applied Polymer Science</i> , 2016 , 133, n/a-n/a	2.9	24
77	Improved solid oxide fuel cell anodes for the direct utilization of methane using Sn-doped Ni/YSZ catalysts. <i>Catalysis Communications</i> , 2009 , 11, 180-183	3.2	23
76	CO oxidation on SnO2 surfaces enhanced by metal doping. <i>Catalysis Science and Technology</i> , 2018 , 8, 782-789	5.5	22
75	Chemical and thermal stability of Pt nanocubes synthesized with various surface-capping agents. Journal of Nanoscience and Nanotechnology, 2010 , 10, 233-9	1.3	22
74	Electrochemically deposited Sn catalysts with dense tips on a gas diffusion electrode for electrochemical CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9032-9038	13	21
73	Study on Dissolution and Regeneration of Poplar Wood in Imidazolium-Based Ionic Liquids. <i>Journal of Wood Chemistry and Technology</i> , 2011 , 31, 89-102	2	20
72	Electrocatalytic properties of platinum overgrown on various shapes of gold nanocrystals. <i>Journal of Molecular Catalysis A</i> , 2010 , 333, 6-10		19
71	Monodisperse IrOx deposited on Pt/C for reversal tolerant anode in proton exchange membrane fuel cell. <i>Journal of Power Sources</i> , 2019 , 443, 227270	8.9	18
70	Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts. <i>Journal of Hazardous Materials</i> , 2015 , 289, 63-71	12.8	17
69	Platinum li tanium intermetallic nanoparticle catalysts for oxygen reduction reaction with enhanced activity and durability. <i>Electrochemistry Communications</i> , 2016 , 66, 66-70	5.1	17
68	Diamine-Anchored Polystyrene Resins for Reversible SO2 Adsorption. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2012-2019	8.3	17
67	Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO reduction toward C products. <i>Nature Communications</i> , 2021 , 12, 3765	17.4	17
66	Hydrophilic-hydrophobic dual catalyst layers for proton exchange membrane fuel cells under low humidity. <i>Electrochemistry Communications</i> , 2018 , 97, 105-109	5.1	17
65	Top-down shaping of metal nanoparticles in solution: partially etched Au@Pt nanoparticles with unique morphology. <i>Chemical Communications</i> , 2011 , 47, 8079-81	5.8	16
64	Light-assisted surface reactions on metal nanoparticles. <i>Catalysis Science and Technology</i> , 2018 , 8, 3718-3	3 727	16

63	Facet-Dependent Mn Doping on Shaped Co3O4 Crystals for Catalytic Oxidation. <i>ACS Catalysis</i> , 2021 , 11, 11066-11074	13.1	16
62	Lean NOx trap catalysts with high low-temperature activity and hydrothermal stability. <i>Applied Catalysis B: Environmental</i> , 2020 , 270, 118871	21.8	15
61	Transformation of carbon dioxide into carbon nanotubes for enhanced ion transport and energy storage. <i>Nanoscale</i> , 2020 , 12, 7822-7833	7.7	15
60	Understanding the unique interaction of amine-containing ionic compounds with SO2 for high absorption capacity. <i>RSC Advances</i> , 2013 , 3, 25944	3.7	15
59	A distinct platinum growth mode on shaped gold nanocrystals. <i>Chemical Communications</i> , 2012 , 48, 257	'-9 .8	15
58	Synergistic Effect of Cu/CeO and Pt-BaO/CeO Catalysts for a Low-Temperature Lean NO Trap. <i>Environmental Science & Environmental Science & Environment</i>	10.3	14
57	Selectivity Modulated by Surface Ligands on Cu2O/TiO2 Catalysts for Gas-Phase Photocatalytic Reduction of Carbon Dioxide. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 29184-29191	3.8	14
56	Enhanced Catalytic Activity of (DMSO)2PtCl2 for the Methane Oxidation in the SO3H2SO4 System. <i>ACS Catalysis</i> , 2018 , 8, 11854-11862	13.1	14
55	Shape effect of Ag-Ni binary nanoparticles on catalytic hydrogenation aided by surface plasmons. <i>Chemical Communications</i> , 2015 , 51, 12316-9	5.8	13
54	High Facets on Nanowrinkled Cu via Chemical Vapor Deposition Graphene Growth for Efficient CO2 Reduction into Ethanol. <i>ACS Catalysis</i> , 2021 , 11, 5658-5665	13.1	13
53	Reversible absorption of SO2 with alkyl-anilines: The effects of alkyl group on aniline and water. Journal of Industrial and Engineering Chemistry, 2019 , 69, 338-344	6.3	13
52	Production of acrylic acid from biomass-derived allyl alcohol by selective oxidation using Au/ceria catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 3616-3622	5.5	12
51	Hydrolysis of ionic cellulose to glucose. <i>Bioresource Technology</i> , 2014 , 167, 484-9	11	12
50	Metal ion-assisted reshaping of Cu2O nanocrystals for catalytic applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14183	13	12
49	Shaped platinum nanoparticles directly synthesized inside mesoporous silica supports. <i>Nanoscale</i> , 2014 , 6, 12540-6	7.7	11
48	Oxidative Methane Conversion to Ethane on Highly Oxidized Pd/CeO Catalysts Below 400 LC. <i>ChemSusChem</i> , 2020 , 13, 677-681	8.3	11
47	Design of an Ultrastable and Highly Active Ceria Catalyst for CO Oxidation by Rare-Earth- and Transition-Metal Co-Doping. <i>ACS Catalysis</i> , 2020 , 10, 14877-14886	13.1	10
46	Synthesis of molecular sieves using ketal structure-directing agents and their degradation inside the pore space. <i>Microporous and Mesoporous Materials</i> , 2006 , 88, 266-274	5.3	10

(2020-2020)

45	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. <i>Angewandte Chemie</i> , 2020 , 132, 20872-20877	3.6	10
44	Ring-opening metathesis polymerization of tetracyclododecene using various catalyst systems. Journal of Applied Polymer Science, 2010 , 116, 479-485	2.9	9
43	Y2O3-Inserted Co-Pd/zeolite catalysts for reductive amination of polypropylene glycol. <i>Applied Catalysis A: General</i> , 2018 , 568, 114-122	5.1	9
42	One-pot synthesis of Pd@PdPt coreEhell nanocubes on carbon supports. RSC Advances, 2014 , 4, 63677-0	6 <u>3</u> ,680	8
41	First-principles based phenomenological study of Ni nanocubes: The effects of nanostructuring on carbon poisoning of Ni(0 0 1) nanofacets. <i>Applied Surface Science</i> , 2013 , 265, 339-345	6.7	7
40	A New Energy-Saving Catalytic System: Carbon Dioxide Activation by a Metal/Carbon Catalyst. <i>ChemSusChem</i> , 2017 , 10, 3671-3678	8.3	7
39	Unraveling the origin of extraordinary lean NOx reduction by CO over Ir-Ru bimetallic catalyst at low temperature. <i>Applied Catalysis B: Environmental</i> , 2021 , 280, 119374	21.8	7
38	Mn-doped CuOCo3O4CeO2 catalyst with enhanced activity and durability for hydrocarbon oxidation. <i>Molecular Catalysis</i> , 2019 , 467, 9-15	3.3	6
37	Selective aggregation of polyanion-coated gold nanorods induced by divalent metal ions in an aqueous solution. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 3538-42	1.3	6
36	MODELING OF COPPER ION REMOVAL FROM AQUEOUS SOLUTIONS USING MODIFIED SILICA BEADS. <i>Chemical Engineering Communications</i> , 2000 , 181, 37-55	2.2	6
35	Design Principles of NiFe-Layered Double Hydroxide Anode Catalysts for Anion Exchange Membrane Water Electrolyzers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 37179-37186	9.5	6
34	The role of surface hydroxyl groups on a single-atomic Rh/ZrO catalyst for direct methane oxidation. <i>Chemical Communications</i> , 2021 , 57, 1671-1674	5.8	6
33	Titanium-iridium oxide layer coating to suppress photocorrosion during photocatalytic water splitting. <i>Korean Journal of Chemical Engineering</i> , 2015 , 32, 2429-2433	2.8	5
32	Fe/N/C catalysts systhesized using graphene aerogel for electrocatalytic oxygen reduction reaction in an acidic condition. <i>Korean Journal of Chemical Engineering</i> , 2016 , 33, 2582-2588	2.8	5
31	Selective CO adsorption using sulfur-doped Ni supported by petroleum-based activated carbon. Journal of Industrial and Engineering Chemistry, 2020 , 83, 289-296	6.3	4
30	Seemingly Negligible Amounts of Platinum Nanoparticles Mislead Electrochemical Oxygen Reduction Reaction Pathway on Platinum Single-Atom Catalysts. <i>ChemElectroChem</i> , 2020 , 7, 3716-3719	4.3	4
29	Enhancing the luminescence of carbon nanodots in films by tailoring the functional groups through alkylamine-functionalization and reduction. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 26095-26101	3.6	4
28	Diels-Alder cycloaddition of oxidized furans and ethylene over supported heteropolyacid catalysts for renewable terephthalic acid. <i>Catalysis Today</i> , 2020 , 351, 37-43	5.3	4

27	Solventless Catalytic Etherification of Glycerol Using Acetate Salts as Efficient Catalysts. <i>Bulletin of the Korean Chemical Society</i> , 2018 , 39, 722-725	1.2	4
26	Pt black catalyzed methane oxidation to methyl bisulfate in H2SO4-SO3. <i>Journal of Catalysis</i> , 2019 , 374, 230-236	7.3	3
25	Toward the practical application of direct CO2 hydrogenation technology for methanol production. <i>International Journal of Energy Research</i> , 2020 , 44, 8781-8798	4.5	3
24	Amorphous Ir atomic clusters anchored on crystalline IrO2 nanoneedles for proton exchange membrane water oxidation. <i>Journal of Power Sources</i> , 2022 , 524, 231069	8.9	3
23	Ultra-Low Pt Loaded Porous Carbon Microparticles with Controlled Channel Structure for High-Performance Fuel Cell Catalysts. <i>Advanced Energy Materials</i> ,2102970	21.8	3
22	Pt-IrOx catalysts immobilized on defective carbon for efficient reversal tolerant anode in proton exchange membrane fuel cells. <i>Journal of Catalysis</i> , 2021 , 395, 404-411	7.3	3
21	Stabilization of acid-rich bio-oil by catalytic mild hydrotreating. <i>Environmental Pollution</i> , 2021 , 272, 116	18903	3
20	Selective Oxidation of Allyl Alcohol to Acrylic Acid in Base-Free Aqueous Solution. <i>ChemistrySelect</i> , 2017 , 2, 2420-2425	1.8	2
19	Ionic Liquid-assisted Separation of Carbohydrates from Lignocellulosic Biomass. <i>Bulletin of the Korean Chemical Society</i> , 2016 , 37, 1305-1312	1.2	2
18	Orthopalladated complexes as phase-transfer catalysts for asymmetric alkylation of achiral Schiff base esters. <i>Transition Metal Chemistry</i> , 2010 , 35, 949-957	2.1	2
17	Improved H utilization by Pd doping in cobalt catalysts for reductive amination of polypropylene glycol <i>RSC Advances</i> , 2020 , 10, 45159-45169	3.7	2
16	Surface Restructuring of Supported Nano-Ceria for Improving Sulfur Resistance. <i>ACS Catalysis</i> , 2021 , 11, 7154-7159	13.1	2
15	Learning the properties of a water-lean amine solvent from carbon capture pilot experiments. <i>Applied Energy</i> , 2021 , 283, 116213	10.7	2
14	Controlled doping of electrocatalysts through engineering impurities Advanced Materials, 2022, e2203	3 <u>0</u> 340	2
13	Magnesium Oxide-catalyzed Oxidative Depolymerization of EFB Lignin. <i>Bulletin of the Korean Chemical Society</i> , 2016 , 37, 515-521	1.2	1
12	Copper oxide shape effect in CeO2/Cu2O catalysts for PROX reaction. <i>International Journal of Nanotechnology</i> , 2013 , 10, 735	1.5	1
11	Lens-Shaped Carbon Particles with Perpendicularly-Oriented Channels for High-Performance Proton Exchange Membrane Fuel Cells <i>ACS Nano</i> , 2022 ,	16.7	1
10	Across the Board: Hyunjoo Lee on Electrochemical CO Reduction. <i>ChemSusChem</i> , 2020 , 13, 2799-2801	8.3	1

LIST OF PUBLICATIONS

	9	Re-dispersion of Pd-based bimetallic catalysts by hydrothermal treatment for CO oxidation <i>RSC Advances</i> , 2021 , 11, 3104-3109	3.7	1
	8	Single-Phase Formation of Rh O Nanoparticles on h-BN Support for Highly Controlled Methane Partial Oxidation to Syngas. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25411-25418	16.4	1
-	7	Atomically ordered Pt3Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 7399-7408	13	1
(6	Direct Observation of Rhodium Ex-Solution from a Ceria Nanodomain and Its Use for Hydrogen Production via Propane Steam Reforming. <i>ACS Applied Materials & Action Steam</i> , 10, 11, 12, 13, 48508-4851	1 <i>§</i> ·5	O
ļ	5	Improved catalytic depolymerization of lignin waste using carbohydrate derivatives. <i>Environmental Pollution</i> , 2021 , 268, 115674	9.3	O
4	4	Catalytic Approaches Towards Highly Durable Proton Exchange Membrane Fuel Cells with Minimized Pt Use. <i>Chemical Science</i> ,	9.4	O
į	3	Electrocatalysis 2018 , 315-359		
:	2	Sustainable Electrochemical NO Capture and Storage System Based on the Reversible Fe2+/Fe3+-EDTA Redox Reaction. <i>Catalysts</i> , 2022 , 12, 79	4	
-	1	Single-Phase Formation of Rh2O3 Nanoparticles on h-BN Support for Highly Controlled Methane Partial Oxidation to Syngas. <i>Angewandte Chemie</i> , 2021 , 133, 25615	3.6	