## Hyunjoo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2829613/publications.pdf Version: 2024-02-01



HYUNIOO LEE

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6, 692-697.                                                                                                                                  | 27.5 | 1,156     |
| 2  | Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity. Nano Letters, 2007, 7,<br>3097-3101.                                                                                                                          | 9.1  | 811       |
| 3  | Singleâ€Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical<br>Reactions. Angewandte Chemie - International Edition, 2016, 55, 2058-2062.                                                             | 13.8 | 708       |
| 4  | Morphological Control of Catalytically Active Platinum Nanocrystals. Angewandte Chemie -<br>International Edition, 2006, 45, 7824-7828.                                                                                                 | 13.8 | 608       |
| 5  | Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid. Journal of the American Chemical Society, 2008, 130, 5406-5407.                                                                | 13.7 | 399       |
| 6  | Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. ACS<br>Catalysis, 2017, 7, 1301-1307.                                                                                                           | 11.2 | 363       |
| 7  | Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct<br>Conversion. Journal of the American Chemical Society, 2017, 139, 17694-17699.                                                    | 13.7 | 297       |
| 8  | Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the<br>introduction of surface hydrophilicity onto the surface of adsorbents. Microporous and<br>Mesoporous Materials, 2001, 50, 77-90. | 4.4  | 274       |
| 9  | Investigation of the Support Effect in Atomically Dispersed Pt on WO <sub>3â^'<i>x</i></sub> for<br>Utilization of Pt in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019,<br>58, 16038-16042.          | 13.8 | 271       |
| 10 | Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. Nature Communications, 2017, 8, 1449.                                                                         | 12.8 | 250       |
| 11 | Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. Applied<br>Catalysis B: Environmental, 2017, 203, 625-632.                                                                                        | 20.2 | 237       |
| 12 | Ultrathin IrO <sub>2</sub> Nanoneedles for Electrochemical Water Oxidation. Advanced Functional<br>Materials, 2018, 28, 1704796.                                                                                                        | 14.9 | 226       |
| 13 | Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nature Catalysis, 2020, 3, 368-375.                                                                              | 34.4 | 220       |
| 14 | General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nature Communications, 2019, 10, 5193.                                                                       | 12.8 | 219       |
| 15 | Singleâ€Atom Catalysts of Precious Metals for Electrochemical Reactions. ChemSusChem, 2018, 11, 104-113.                                                                                                                                | 6.8  | 218       |
| 16 | A Combination of Two Visible-Light Responsive Photocatalysts for Achieving the Z-Scheme in the Solid<br>State. ACS Nano, 2011, 5, 4084-4090.                                                                                            | 14.6 | 203       |
| 17 | A combustion-free methodology for synthesizing zeolites and zeolite-like materials. Nature, 2003, 425, 385-388.                                                                                                                         | 27.8 | 179       |
| 18 | Influence of Aspect Ratio of TiO2 Nanorods on the Photocatalytic Decomposition of Formic Acid.<br>Journal of Physical Chemistry C, 2009, 113, 3050-3055.                                                                                | 3.1  | 172       |

Hyunjoo Lee

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Fully Dispersed Rh Ensemble Catalyst To Enhance Low-Temperature Activity. Journal of the American<br>Chemical Society, 2018, 140, 9558-9565.                                         | 13.7 | 170       |
| 20 | The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation.<br>Catalysis Letters, 2009, 129, 1-6.                                            | 2.6  | 159       |
| 21 | Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to γ-valerolactone. Applied Catalysis B: Environmental, 2019, 241, 588-597. | 20.2 | 153       |
| 22 | Highly Durable Platinum Singleâ€Atom Alloy Catalyst for Electrochemical Reactions. Advanced Energy<br>Materials, 2018, 8, 1701476.                                                   | 19.5 | 152       |
| 23 | Highly Cokeâ€Resistant Ni Nanoparticle Catalysts with Minimal Sintering in Dry Reforming of Methane.<br>ChemSusChem, 2014, 7, 451-456.                                               | 6.8  | 151       |
| 24 | Promoting Effects of Hydrothermal Treatment on the Activity and Durability of Pd/CeO <sub>2</sub><br>Catalysts for CO Oxidation. ACS Catalysis, 2017, 7, 7097-7105.                  | 11.2 | 151       |
| 25 | Probing Hot Electron Flow Generated on Pt Nanoparticles with Au/TiO <sub>2</sub> Schottky Diodes<br>during Catalytic CO Oxidation. Nano Letters, 2008, 8, 2388-2392.                 | 9.1  | 137       |
| 26 | Highly Water-Resistant La-Doped Co <sub>3</sub> O <sub>4</sub> Catalyst for CO Oxidation. ACS<br>Catalysis, 2019, 9, 10093-10100.                                                    | 11.2 | 126       |
| 27 | Atomically Dispersed Platinum on Gold Nano-Octahedra with High Catalytic Activity on Formic Acid<br>Oxidation. ACS Catalysis, 2013, 3, 437-443.                                      | 11.2 | 125       |
| 28 | Structure dependent active sites of Ni <sub>x</sub> S <sub>y</sub> as electrocatalysts for hydrogen evolution reaction. Nanoscale, 2015, 7, 5157-5163.                               | 5.6  | 121       |
| 29 | Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia. Green Chemistry, 2011, 13, 2004.                                                                     | 9.0  | 116       |
| 30 | Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene.<br>Journal of Catalysis, 2013, 306, 146-154.                                           | 6.2  | 116       |
| 31 | Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting.<br>Journal of Materials Chemistry A, 2015, 3, 156-162.                            | 10.3 | 114       |
| 32 | Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte<br>Chemie - International Edition, 2020, 59, 20691-20696.                           | 13.8 | 113       |
| 33 | Rational Design of TiC-Supported Single-Atom Electrocatalysts for Hydrogen Evolution and Selective<br>Oxygen Reduction Reactions. ACS Energy Letters, 2019, 4, 126-132.              | 17.4 | 104       |
| 34 | Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. Applied Catalysis B: Environmental, 2010, 97, 108-114.              | 20.2 | 101       |
| 35 | Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nature Communications, 2021, 12, 3765.                              | 12.8 | 99        |
| 36 | Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano, 2020, 14, 14355-14374.                                                                 | 14.6 | 97        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Singleâ€Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical<br>Reactions. Angewandte Chemie, 2016, 128, 2098-2102.                                                         | 2.0  | 94        |
| 38 | Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts. Nature Communications, 2018, 9, 3027.                                                        | 12.8 | 86        |
| 39 | Distinct activation of Cu-MOR for direct oxidation of methane to methanol. Chemical Communications, 2017, 53, 4116-4119.                                                                                     | 4.1  | 85        |
| 40 | Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. Journal of CO2 Utilization, 2019, 31, 244-250.                                                         | 6.8  | 85        |
| 41 | Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel. Catalysis<br>Communications, 2010, 12, 36-39.                                                                             | 3.3  | 84        |
| 42 | Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state<br>dye-sensitized solar cells with Pt-free counter electrodes. Chemical Communications, 2012, 48, 9501. | 4.1  | 84        |
| 43 | Shape effect of ceria in Cu/ceria catalysts for preferential CO oxidation. Journal of Molecular<br>Catalysis A, 2011, 335, 82-88.                                                                            | 4.8  | 83        |
| 44 | Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catalysis Communications, 2012, 19, 115-118.                                                   | 3.3  | 82        |
| 45 | Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media. Bioresource Technology, 2017, 234, 424-431.                      | 9.6  | 79        |
| 46 | Steam treatment on Ni/γ-Al2O3 for enhanced carbon resistance in combined steam and carbon dioxide reforming of methane. Applied Catalysis B: Environmental, 2013, 134-135, 103-109.                          | 20.2 | 78        |
| 47 | Shaped Ir–Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction.<br>Chemical Communications, 2016, 52, 5641-5644.                                                           | 4.1  | 78        |
| 48 | Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells. Applied<br>Catalysis B: Environmental, 2019, 247, 142-149.                                                          | 20.2 | 76        |
| 49 | Change in the catalytic reactivity of Pt nanocubes in the presence of different surface-capping agents.<br>Catalysis Communications, 2009, 10, 1305-1309.                                                    | 3.3  | 73        |
| 50 | Amine-Functionalized Covalent Organic Framework for Efficient SO2 Capture with High Reversibility.<br>Scientific Reports, 2017, 7, 557.                                                                      | 3.3  | 73        |
| 51 | Palladium Singleâ€Atom Catalysts Supported on C@C <sub>3</sub> N <sub>4</sub> for Electrochemical<br>Reactions. ChemElectroChem, 2019, 6, 4757-4764.                                                         | 3.4  | 70        |
| 52 | Facet-Dependent Mn Doping on Shaped Co <sub>3</sub> O <sub>4</sub> Crystals for Catalytic Oxidation. ACS Catalysis, 2021, 11, 11066-11074.                                                                   | 11.2 | 69        |
| 53 | 10 <sup>5</sup> Cyclable Pseudocapacitive Na-Ion Storage of Hierarchically Structured<br>Phosphorus-Incorporating Nanoporous Carbons in Organic Electrolytes. ACS Energy Letters, 2018, 3,<br>724-732.       | 17.4 | 68        |
| 54 | Enhanced activity and durability of Ru catalyst dispersed on zirconia for dry reforming of methane.<br>Catalysis Today, 2017, 293-294, 122-128.                                                              | 4.4  | 67        |

| #  | Article                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. BMC Chemical Engineering, 2019, 1, .                                                                                                                                                               | 3.4  | 64        |
| 56 | Electronic structure modification of platinum on titanium nitride resulting in enhanced catalytic activity and durability for oxygen reduction and formic acid oxidation. Applied Catalysis B: Environmental, 2015, 174-175, 35-42.                                                 | 20.2 | 63        |
| 57 | Facile preparation of high performance visible light sensitive photo-catalysts. Applied Catalysis B:<br>Environmental, 2010, 94, 241-247.                                                                                                                                           | 20.2 | 62        |
| 58 | Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode. Chemical Engineering Journal, 2020, 382, 122946.                                                                                                           | 12.7 | 61        |
| 59 | Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy and Environmental Science, 2020, 13, 4921-4929.                                                                                                      | 30.8 | 61        |
| 60 | Platinum Nanoparticles Encapsulated by Aminopeptidase: A Multifunctional Bioinorganic Nanohybrid<br>Catalyst. Angewandte Chemie - International Edition, 2011, 50, 11924-11929.                                                                                                     | 13.8 | 60        |
| 61 | Production of high carbon number hydrocarbon fuels from a lignin-derived α-O-4 phenolic dimer,<br>benzyl phenyl ether, via isomerization of ether to alcohols on high-surface-area silica-alumina<br>aerogel catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 668-676. | 20.2 | 58        |
| 62 | Spectroscopic Study of Tetradecyltrimethylammonium Bromide Ptâ^'C <sub>14</sub> TAB Nanoparticles:<br>Structure and Stability. Langmuir, 2009, 25, 6665-6671.                                                                                                                       | 3.5  | 56        |
| 63 | Synthesis of biolubricants using sulfated zirconia catalysts. Applied Catalysis A: General, 2013, 455, 164-171.                                                                                                                                                                     | 4.3  | 54        |
| 64 | Utilization of shape-controlled nanoparticles as catalysts with enhanced activity and selectivity. RSC Advances, 2014, 4, 41017-41027.                                                                                                                                              | 3.6  | 54        |
| 65 | REMOVAL OF COPPER IONS USING FUNCTIONALIZED MESOPOROUS SILICA IN AQUEOUS SOLUTION.<br>Separation Science and Technology, 2001, 36, 2433-2448.                                                                                                                                       | 2.5  | 53        |
| 66 | Platinum dendrites with controlled sizes for oxygen reduction reaction. Electrochemistry Communications, 2010, 12, 1596-1599.                                                                                                                                                       | 4.7  | 49        |
| 67 | Investigation of the Support Effect in Atomically Dispersed Pt on WO 3â^' x for Utilization of Pt in the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 16184-16188.                                                                                                    | 2.0  | 49        |
| 68 | High Facets on Nanowrinkled Cu via Chemical Vapor Deposition Graphene Growth for Efficient<br>CO <sub>2</sub> Reduction into Ethanol. ACS Catalysis, 2021, 11, 5658-5665.                                                                                                           | 11.2 | 46        |
| 69 | Heteropolyacid catalysts for Diels-Alder cycloaddition of 2,5-dimethylfuran and ethylene to renewable p -xylene. Catalysis Today, 2017, 293-294, 167-175.                                                                                                                           | 4.4  | 44        |
| 70 | Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chemical Communications, 2019, 55, 6389-6392.                                                                                           | 4.1  | 44        |
| 71 | Shape-Controlled Nanocrystals for Catalytic Applications. Catalysis Surveys From Asia, 2012, 16, 14-27.                                                                                                                                                                             | 2.6  | 42        |
| 72 | Surface Plasmon Aided Ethanol Dehydrogenation Using Ag–Ni Binary Nanoparticles. ACS Catalysis,<br>2017, 7, 2294-2302.                                                                                                                                                               | 11.2 | 42        |

Ηγυνιοο Lee

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Tuning the band-gap energy of TiO2-C nanoparticle for high performance photo-catalyst.<br>Electrochemistry Communications, 2010, 12, 769-772.                                                    | 4.7  | 41        |
| 74 | Electrochemically deposited Sn catalysts with dense tips on a gas diffusion electrode for<br>electrochemical CO <sub>2</sub> reduction. Journal of Materials Chemistry A, 2020, 8, 9032-9038.    | 10.3 | 41        |
| 75 | Selective hydrogenation of furanic aldehydes using Ni nanoparticle catalysts capped with organic molecules. Journal of Catalysis, 2016, 344, 609-615.                                            | 6.2  | 39        |
| 76 | Enhancing stability of octahedral PtNi nanoparticles for oxygen reduction reaction by halide treatment. Journal of Power Sources, 2016, 307, 883-890.                                            | 7.8  | 39        |
| 77 | Synthesis of alumina–carbon composite material for the catalytic conversion of furfural to furfuryl alcohol. Journal of Industrial and Engineering Chemistry, 2017, 52, 59-65.                   | 5.8  | 39        |
| 78 | Characterization of photocatalytic performance of silver deposited TiO2 nanorods. Electrochemistry Communications, 2009, 11, 363-366.                                                            | 4.7  | 38        |
| 79 | In situ shaping of Pt nanoparticles directly overgrown on carbon supports. Chemical<br>Communications, 2012, 48, 6396.                                                                           | 4.1  | 37        |
| 80 | Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. Catalysis Communications, 2009, 11, 7-10.                                                                                     | 3.3  | 36        |
| 81 | Monodisperse IrOx deposited on Pt/C for reversal tolerant anode in proton exchange membrane fuel cell. Journal of Power Sources, 2019, 443, 227270.                                              | 7.8  | 36        |
| 82 | Design Principles of NiFe-Layered Double Hydroxide Anode Catalysts for Anion Exchange Membrane<br>Water Electrolyzers. ACS Applied Materials & Interfaces, 2021, 13, 37179-37186.                | 8.0  | 36        |
| 83 | Shaped Ni nanoparticles with an unconventional hcp crystalline structure. Chemical<br>Communications, 2014, 50, 6353.                                                                            | 4.1  | 35        |
| 84 | Zeolite Synthesis Using Degradable Structure-Directing Agents and Pore-Filling Agentsâ€. Journal of Physical Chemistry B, 2005, 109, 2187-2191.                                                  | 2.6  | 34        |
| 85 | Surface-specific overgrowth of platinum on shaped gold nanocrystals. Physical Chemistry Chemical Physics, 2009, 11, 9759.                                                                        | 2.8  | 34        |
| 86 | Surfactant-assisted synthesis of MgO: Characterization and catalytic activity on the transesterification of dimethyl carbonate with glycerol. Applied Catalysis A: General, 2014, 484, 33-38.    | 4.3  | 33        |
| 87 | Solidâ€state polymerization and characterization of a copolyamide based on adipic acid,<br>1,4â€butanediamine, and 2,5â€furandicarboxylic acid. Journal of Applied Polymer Science, 2016, 133, . | 2.6  | 33        |
| 88 | Highly Selective Production of Acrylic Acid from Glycerol via Two Steps Using Au/CeO <sub>2</sub><br>Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 11371-11376.                 | 6.7  | 33        |
| 89 | Unraveling the origin of extraordinary lean NOx reduction by CO over Ir-Ru bimetallic catalyst at low temperature. Applied Catalysis B: Environmental, 2021, 280, 119374.                        | 20.2 | 33        |
| 90 | â€~Click' Preparation of CuPt Nanorodâ€Anchored Graphene Oxide as a Catalyst in Water. Small, 2012, 8,<br>3161-3168.                                                                             | 10.0 | 32        |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Waterâ€Assisted Selective Hydrodeoxygenation of Ligninâ€Derived Guaiacol to Monooxygenates.<br>ChemCatChem, 2015, 7, 2669-2674.                                                                                   | 3.7  | 32        |
| 92  | Light-assisted surface reactions on metal nanoparticles. Catalysis Science and Technology, 2018, 8, 3718-3727.                                                                                                    | 4.1  | 32        |
| 93  | Transformation of carbon dioxide into carbon nanotubes for enhanced ion transport and energy storage. Nanoscale, 2020, 12, 7822-7833.                                                                             | 5.6  | 32        |
| 94  | Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents. Journal of<br>Hazardous Materials, 2014, 264, 136-143.                                                                  | 12.4 | 30        |
| 95  | Enhanced Catalytic Activity of (DMSO) <sub>2</sub> PtCl <sub>2</sub> for the Methane Oxidation in the SO <sub>3</sub> –H <sub>2</sub> SO <sub>4</sub> System. ACS Catalysis, 2018, 8, 11854-11862.                | 11.2 | 30        |
| 96  | Cellulose triacetateâ€based polymer gel electrolytes. Journal of Applied Polymer Science, 2010, 115, 32-36.                                                                                                       | 2.6  | 29        |
| 97  | PtRu nano-dandelions on thiolated carbon nanotubes: a new synthetic strategy for supported bimetallic core–shell clusters on the atomic scale. Chemical Communications, 2010, 46, 2085.                           | 4.1  | 29        |
| 98  | Effect of TiO <sub>2</sub> Nanoparticle Shape on Hydrogen Evolution via Water Splitting. Journal of<br>Nanoscience and Nanotechnology, 2011, 11, 1688-1691.                                                       | 0.9  | 29        |
| 99  | Three-Dimensional Reduced-Symmetry of Colloidal Plasmonic Nanoparticles. Nano Letters, 2012, 12, 2436-2440.                                                                                                       | 9.1  | 29        |
| 100 | Enhanced electrocatalytic performance due to anomalous compressive strain and superior electron retention properties of highly porous Pt nanoparticles. Journal of Catalysis, 2012, 291, 69-78.                   | 6.2  | 29        |
| 101 | Lean NOx trap catalysts with high low-temperature activity and hydrothermal stability. Applied Catalysis B: Environmental, 2020, 270, 118871.                                                                     | 20.2 | 29        |
| 102 | Ultra‣ow Pt Loaded Porous Carbon Microparticles with Controlled Channel Structure for<br>Highâ€Performance Fuel Cell Catalysts. Advanced Energy Materials, 2021, 11, 2102970.                                     | 19.5 | 29        |
| 103 | Shape- and Composition-Controlled Pt–Fe–Co Nanoparticles for Electrocatalytic Methanol<br>Oxidation. Topics in Catalysis, 2010, 53, 686-693.                                                                      | 2.8  | 28        |
| 104 | Facile preparation of water soluble CuPt nanorods with controlled aspect ratio and study on their catalytic properties in water. Journal of Materials Chemistry, 2011, 21, 11956.                                 | 6.7  | 28        |
| 105 | Hydrophilic-hydrophobic dual catalyst layers for proton exchange membrane fuel cells under low<br>humidity. Electrochemistry Communications, 2018, 97, 105-109.                                                   | 4.7  | 28        |
| 106 | Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte Chemie, 2020, 132, 20872-20877.                                                                                  | 2.0  | 28        |
| 107 | Selectivity Modulated by Surface Ligands on Cu <sub>2</sub> O/TiO <sub>2</sub> Catalysts for<br>Gas-Phase Photocatalytic Reduction of Carbon Dioxide. Journal of Physical Chemistry C, 2019, 123,<br>29184-29191. | 3.1  | 27        |
| 108 | Improved solid oxide fuel cell anodes for the direct utilization of methane using Sn-doped Ni/YSZ catalysis Communications, 2009, 11, 180-183.                                                                    | 3.3  | 26        |

Ηγυνιοο Lee

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Study on Dissolution and Regeneration of Poplar Wood in Imidazolium-Based Ionic Liquids. Journal of<br>Wood Chemistry and Technology, 2011, 31, 89-102.                                                                     | 1.7  | 26        |
| 110 | Synergistic Effect of Cu/CeO <sub>2</sub> and Pt–BaO/CeO <sub>2</sub> Catalysts for a<br>Low-Temperature Lean NO <sub><i>x</i></sub> Trap. Environmental Science & Technology, 2019, 53,<br>2900-2907.                      | 10.0 | 26        |
| 111 | Atomically ordered Pt <sub>3</sub> Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. Journal of Materials Chemistry A, 2022, 10, 7399-7408.                                                | 10.3 | 26        |
| 112 | CO oxidation on SnO <sub>2</sub> surfaces enhanced by metal doping. Catalysis Science and Technology, 2018, 8, 782-789.                                                                                                     | 4.1  | 25        |
| 113 | Amorphous Ir atomic clusters anchored on crystalline IrO2 nanoneedles for proton exchange membrane water oxidation. Journal of Power Sources, 2022, 524, 231069.                                                            | 7.8  | 25        |
| 114 | Lens-Shaped Carbon Particles with Perpendicularly-Oriented Channels for High-Performance Proton<br>Exchange Membrane Fuel Cells. ACS Nano, 2022, 16, 2988-2996.                                                             | 14.6 | 24        |
| 115 | Chemical and Thermal Stability of Pt Nanocubes Synthesized with Various Surface-Capping Agents.<br>Journal of Nanoscience and Nanotechnology, 2010, 10, 233-239.                                                            | 0.9  | 23        |
| 116 | Electrocatalytic properties of platinum overgrown on various shapes of gold nanocrystals. Journal of Molecular Catalysis A, 2010, 333, 6-10.                                                                                | 4.8  | 23        |
| 117 | Platinum–titanium intermetallic nanoparticle catalysts for oxygen reduction reaction with enhanced activity and durability. Electrochemistry Communications, 2016, 66, 66-70.                                               | 4.7  | 23        |
| 118 | Design of an Ultrastable and Highly Active Ceria Catalyst for CO Oxidation by Rare-Earth- and Transition-Metal Co-Doping. ACS Catalysis, 2020, 10, 14877-14886.                                                             | 11.2 | 23        |
| 119 | Surface Restructuring of Supported Nano-Ceria for Improving Sulfur Resistance. ACS Catalysis, 2021, 11, 7154-7159.                                                                                                          | 11.2 | 23        |
| 120 | Absorption and desorption of SO 2 in aqueous solutions of diamine-based molten salts. Journal of<br>Hazardous Materials, 2015, 289, 63-71.                                                                                  | 12.4 | 21        |
| 121 | Diamine-Anchored Polystyrene Resins for Reversible SO <sub>2</sub> Adsorption. ACS Sustainable Chemistry and Engineering, 2016, 4, 2012-2019.                                                                               | 6.7  | 20        |
| 122 | Production of acrylic acid from biomass-derived allyl alcohol by selective oxidation using Au/ceria catalysts. Catalysis Science and Technology, 2016, 6, 3616-3622.                                                        | 4.1  | 19        |
| 123 | Reversible absorption of SO2 with alkyl-anilines: The effects of alkyl group on aniline and water.<br>Journal of Industrial and Engineering Chemistry, 2019, 69, 338-344.                                                   | 5.8  | 18        |
| 124 | Singleâ€Phase Formation of Rh <sub>2</sub> O <sub>3</sub> Nanoparticles on hâ€BN Support for Highly<br>Controlled Methane Partial Oxidation to Syngas. Angewandte Chemie - International Edition, 2021, 60,<br>25411-25418. | 13.8 | 17        |
| 125 | Top-down shaping of metal nanoparticles in solution: partially etched Au@Pt nanoparticles with unique morphology. Chemical Communications, 2011, 47, 8079.                                                                  | 4.1  | 16        |
| 126 | Pt black catalyzed methane oxidation to methyl bisulfate in H2SO4-SO3. Journal of Catalysis, 2019, 374, 230-236.                                                                                                            | 6.2  | 16        |

Hyunjoo Lee

| #   | Article                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Oxidative Methane Conversion to Ethane on Highly Oxidized Pd/CeO <sub>2</sub> Catalysts Below<br>400 °C. ChemSusChem, 2020, 13, 677-681.                                      | 6.8  | 16        |
| 128 | A distinct platinum growth mode on shaped gold nanocrystals. Chemical Communications, 2012, 48, 257-259.                                                                      | 4.1  | 15        |
| 129 | Understanding the unique interaction of amine-containing ionic compounds with SO2 for high absorption capacity. RSC Advances, 2013, 3, 25944.                                 | 3.6  | 15        |
| 130 | The role of surface hydroxyl groups on a single-atomic Rh <sub>1</sub> /ZrO <sub>2</sub> catalyst for direct methane oxidation. Chemical Communications, 2021, 57, 1671-1674. | 4.1  | 15        |
| 131 | Highly Durable Heterogeneous Atomic Catalysts. Accounts of Chemical Research, 2022, 55, 1372-1382.                                                                            | 15.6 | 15        |
| 132 | Metal ion-assisted reshaping of Cu2O nanocrystals for catalytic applications. Journal of Materials<br>Chemistry A, 2013, 1, 14183.                                            | 10.3 | 14        |
| 133 | Diels-Alder cycloaddition of oxidized furans and ethylene over supported heteropolyacid catalysts for renewable terephthalic acid. Catalysis Today, 2020, 351, 37-43.         | 4.4  | 14        |
| 134 | Shape effect of Ag–Ni binary nanoparticles on catalytic hydrogenation aided by surface plasmons.<br>Chemical Communications, 2015, 51, 12316-12319.                           | 4.1  | 13        |
| 135 | Y2O3-Inserted Co-Pd/zeolite catalysts for reductive amination of polypropylene glycol. Applied Catalysis A: General, 2018, 568, 114-122.                                      | 4.3  | 13        |
| 136 | Ring-opening metathesis polymerization of tetracyclododecene using various catalyst systems.<br>Journal of Applied Polymer Science, 2010, 116, 479-485.                       | 2.6  | 12        |
| 137 | Hydrolysis of ionic cellulose to glucose. Bioresource Technology, 2014, 167, 484-489.                                                                                         | 9.6  | 12        |
| 138 | Mn-doped CuO Co3O4CeO2 catalyst with enhanced activity and durability for hydrocarbon oxidation.<br>Molecular Catalysis, 2019, 467, 9-15.                                     | 2.0  | 12        |
| 139 | Gas-Permeable Iron-Doped Ceria Shell on Rh Nanoparticles with High Activity and Durability. Jacs Au, 2022, 2, 1115-1122.                                                      | 7.9  | 12        |
| 140 | Controlled Doping of Electrocatalysts through Engineering Impurities. Advanced Materials, 2022, 34, e2203030.                                                                 | 21.0 | 12        |
| 141 | Synthesis of molecular sieves using ketal structure-directing agents and their degradation inside the pore space. Microporous and Mesoporous Materials, 2006, 88, 266-274.    | 4.4  | 11        |
| 142 | Shaped platinum nanoparticles directly synthesized inside mesoporous silica supports. Nanoscale, 2014, 6, 12540-12546.                                                        | 5.6  | 11        |
| 143 | Stabilization of acid-rich bio-oil by catalytic mild hydrotreating. Environmental Pollution, 2021, 272, 116180.                                                               | 7.5  | 11        |
| 144 | Pt-IrOx catalysts immobilized on defective carbon for efficient reversal tolerant anode in proton exchange membrane fuel cells. Journal of Catalysis, 2021, 395, 404-411.     | 6.2  | 11        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Microwave-assisted phenolation of acid-insoluble Klason lignin and its application in adhesion. Green Chemistry, 2022, 24, 2051-2061.                                                            | 9.0  | 11        |
| 146 | Catalytic approaches towards highly durable proton exchange membrane fuel cells with minimized Pt<br>use. Chemical Science, 2022, 13, 6782-6795.                                                 | 7.4  | 11        |
| 147 | Selective CO adsorption using sulfur-doped Ni supported by petroleum-based activated carbon.<br>Journal of Industrial and Engineering Chemistry, 2020, 83, 289-296.                              | 5.8  | 10        |
| 148 | Electrodeposited Sn–Cu@Sn dendrites for selective electrochemical CO <sub>2</sub> reduction to formic acid. Nanoscale, 2022, 14, 9297-9303.                                                      | 5.6  | 10        |
| 149 | One-pot synthesis of Pd@PdPt core–shell nanocubes on carbon supports. RSC Advances, 2014, 4,<br>63677-63680.                                                                                     | 3.6  | 9         |
| 150 | Learning the properties of a water-lean amine solvent from carbon capture pilot experiments. Applied Energy, 2021, 283, 116213.                                                                  | 10.1 | 9         |
| 151 | First-principles based phenomenological study of Ni nanocubes: The effects of nanostructuring on carbon poisoning of Ni(0 0 1) nanofacets. Applied Surface Science, 2013, 265, 339-345.          | 6.1  | 8         |
| 152 | A New Energyâ€ <b>S</b> aving Catalytic System: Carbon Dioxide Activation by a Metal/Carbon Catalyst.<br>ChemSusChem, 2017, 10, 3671-3678.                                                       | 6.8  | 8         |
| 153 | Solventless Catalytic Etherification of Glycerol Using Acetate Salts as Efficient Catalysts. Bulletin of the Korean Chemical Society, 2018, 39, 722-725.                                         | 1.9  | 8         |
| 154 | Seemingly Negligible Amounts of Platinum Nanoparticles Mislead Electrochemical Oxygen Reduction<br>Reaction Pathway on Platinum Singleâ€Atom Catalysts. ChemElectroChem, 2020, 7, 3716-3719.     | 3.4  | 8         |
| 155 | Toward the practical application of direct CO 2 hydrogenation technology for methanol production.<br>International Journal of Energy Research, 2020, 44, 8781-8798.                              | 4.5  | 8         |
| 156 | Fe/N/C catalysts systhesized using graphene aerogel for electrocatalytic oxygen reduction reaction in an acidic condition. Korean Journal of Chemical Engineering, 2016, 33, 2582-2588.          | 2.7  | 7         |
| 157 | MODELING OF COPPER ION REMOVAL FROM AQUEOUS SOLUTIONS USING MODIFIED SILICA BEADS.<br>Chemical Engineering Communications, 2000, 181, 37-55.                                                     | 2.6  | 6         |
| 158 | Selective Aggregation of Polyanion-Coated Gold Nanorods Induced by Divalent Metal Ions in an Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2010, 10, 3538-3542.                   | 0.9  | 6         |
| 159 | Titanium-iridium oxide layer coating to suppress photocorrosion during photocatalytic water splitting. Korean Journal of Chemical Engineering, 2015, 32, 2429-2433.                              | 2.7  | 6         |
| 160 | Improved H <sub>2</sub> utilization by Pd doping in cobalt catalysts for reductive amination of polypropylene glycol. RSC Advances, 2020, 10, 45159-45169.                                       | 3.6  | 6         |
| 161 | Direct Observation of Rhodium Ex-Solution from a Ceria Nanodomain and Its Use for Hydrogen<br>Production via Propane Steam Reforming. ACS Applied Materials & Interfaces, 2021, 13, 48508-48515. | 8.0  | 6         |
| 162 | Ionic Liquidâ€assisted Separation of Carbohydrates from Lignocellulosic Biomass. Bulletin of the Korean Chemical Society, 2016, 37, 1305-1312.                                                   | 1.9  | 4         |

Ηγυνιοο Lee

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Selective Oxidation of Allyl Alcohol to Acrylic Acid in Baseâ€Free Aqueous Solution. ChemistrySelect, 2017, 2, 2420-2425.                                                                                 | 1.5 | 4         |
| 164 | Enhancing the luminescence of carbon nanodots in films by tailoring the functional groups through alkylamine-functionalization and reduction. Physical Chemistry Chemical Physics, 2019, 21, 26095-26101. | 2.8 | 4         |
| 165 | Improved catalytic depolymerization of lignin waste using carbohydrate derivatives. Environmental<br>Pollution, 2021, 268, 115674.                                                                        | 7.5 | 4         |
| 166 | Magnesium Oxide atalyzed Oxidative Depolymerization of <scp>EFB</scp> Lignin. Bulletin of the<br>Korean Chemical Society, 2016, 37, 515-521.                                                              | 1.9 | 3         |
| 167 | Re-dispersion of Pd-based bimetallic catalysts by hydrothermal treatment for CO oxidation. RSC Advances, 2021, 11, 3104-3109.                                                                             | 3.6 | 3         |
| 168 | Sustainable Electrochemical NO Capture and Storage System Based on the Reversible Fe2+/Fe3+-EDTA Redox Reaction. Catalysts, 2022, 12, 79.                                                                 | 3.5 | 3         |
| 169 | Orthopalladated complexes as phase-transfer catalysts for asymmetric alkylation of achiral Schiff base esters. Transition Metal Chemistry, 2010, 35, 949-957.                                             | 1.4 | 2         |
| 170 | Photo-assisted electrochemical CO2 reduction using a translucent thin film electrode. Chemical Communications, 2022, 58, 1918-1921.                                                                       | 4.1 | 2         |
| 171 | Copper oxide shape effect in CeO <sub align="right">2/Cu<sub align="right">2O catalysts<br/>for PROX reaction. International Journal of Nanotechnology, 2013, 10, 735.</sub></sub>                        | 0.2 | 1         |
| 172 | Across the Board: Hyunjoo Lee on Electrochemical CO 2 Reduction. ChemSusChem, 2020, 13, 2799-2801.                                                                                                        | 6.8 | 1         |
| 173 | Singleâ€phase formation of Rh2O3 nanoparticles on hâ€BN support for highly controlled methane partial oxidation to syngas. Angewandte Chemie, 2021, 133, 25615.                                           | 2.0 | 0         |
| 174 | <i>JACS Au</i> at Pacifichem 2021. Jacs Au, 2021, 1, 2088-2088.                                                                                                                                           | 7.9 | 0         |