
Valerie C Pierre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2829589/publications.pdf

Version: 2024-02-01

VALEDIE C DIEDDE

#	Article	IF	CITATIONS
1	Metallointercalators-DNA Tetrahedron Supramolecular Self-Assemblies with Increased Serum Stability. ACS Nano, 2022, 16, 2928-2941.	7.3	18
2	Design Principles and Applications of Selective Lanthanide-Based Receptors for Inorganic Phosphate. Frontiers in Chemistry, 2022, 10, 821020.	1.8	10
3	Exploiting the Fluxionality of Lanthanide Complexes in the Design of Paramagnetic Fluorine Probes. Inorganic Chemistry, 2022, 61, 4130-4142.	1.9	5
4	A General Design Strategy Enabling the Synthesis of Hydrolysisâ€Resistant, Water‣table Titanium(IV) Complexes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
5	A General Design Strategy Enabling the Synthesis of Hydrolysisâ€Resistant, Waterâ€ S table Titanium(IV) Complexes. Angewandte Chemie, 2022, 134, .	1.6	1
6	Phosphonate coating of commercial iron oxide nanoparticles for nanowarming cryopreserved samples. Journal of Materials Chemistry B, 2022, 10, 3734-3746.	2.9	7
7	Achieving Selectivity for Phosphate over Pyrophosphate in Ethanol with Iron(III)-Based Fluorescent Probes. Jacs Au, 2022, 2, 1604-1609.	3.6	2
8	A Walk Across the Lanthanide Series: Trend in Affinity for Phosphate and Stability of Lanthanide Receptors from La(III) to Lu(III). Inorganic Chemistry, 2021, 60, 15808-15817.	1.9	7
9	Catechol-Based Functionalizable Ligands for Gallium-68 Positron Emission Tomography Imaging. Inorganic Chemistry, 2020, 59, 12025-12038.	1.9	9
10	The Ligand Cap Affects the Coordination Number but Not Necessarily the Affinity for Anions of Tris-Bidentate Europium Complexes. Inorganic Chemistry, 2020, 59, 4096-4108.	1.9	14
11	Design and applications of metal-based molecular receptors and probes for inorganic phosphate. Chemical Society Reviews, 2020, 49, 1090-1108.	18.7	60
12	Design and Evaluation of the Environmental Outreach Activity for Middle School Students. ACS Omega, 2020, 5, 25175-25187.	1.6	0
13	Design and Evaluation of the Environmental Outreach Activity for Middle School Students. ACS Omega, 2020, 5, 25175-25187.	1.6	4
14	The Stability of the Complex and the Basicity of the Anion Impact the Selectivity and Affinity of Tripodal Gadolinium Complexes for Anions. Inorganic Chemistry, 2019, 58, 15189-15201.	1.9	17
15	A Combination of Factors: Tuning the Affinity of Europium Receptors for Phosphate in Water. Inorganic Chemistry, 2019, 58, 16087-16099.	1.9	24
16	Comparing Strategies in the Design of Responsive Contrast Agents for Magnetic Resonance Imaging: A Case Study with Copper and Zinc. Accounts of Chemical Research, 2018, 51, 342-351.	7.6	44
17	Achieving selectivity for copper over zinc with luminescent terbium probes bearing phenanthridine antennas. Dalton Transactions, 2018, 47, 2202-2213.	1.6	7
18	Development of a Click-Chemistry Reagent Compatible with Mass Cytometry. Scientific Reports, 2018, 8, 6657.	1.6	5

VALERIE C PIERRE

#	Article	IF	CITATIONS
19	Complete on/off responsive ParaCEST MRI contrast agents for copper and zinc. Dalton Transactions, 2018, 47, 11346-11357.	1.6	19
20	A turn-on luminescent europium probe for cyanide detection in water. Chemical Communications, 2018, 54, 9210-9213.	2.2	28
21	Fluorinated Paramagnetic Complexes: Sensitive and Responsive Probes for Magnetic Resonance Spectroscopy and Imaging. Frontiers in Chemistry, 2018, 6, 160.	1.8	65
22	Fe- and Ln-DOTAm-F12 Are Effective Paramagnetic Fluorine Contrast Agents for MRI in Water and Blood. Inorganic Chemistry, 2017, 56, 1546-1557.	1.9	49
23	Gadolinium Complex for the Catch and Release of Phosphate from Water. Environmental Science & Technology, 2017, 51, 4549-4558.	4.6	35
24	Eight-Coordinate, Stable Fe(II) Complex as a Dual ¹⁹ F and CEST Contrast Agent for Ratiometric pH Imaging. Inorganic Chemistry, 2017, 56, 12206-12213.	1.9	41
25	Electrodeposited Fe and Fe–Au nanowires as MRI contrast agents. Chemical Communications, 2016, 52, 12634-12637.	2.2	47
26	Turning an Aptamer into a Light-Switch Probe with a Single Bioconjugation. Bioconjugate Chemistry, 2015, 26, 63-70.	1.8	8
27	Contrast agents for MRI: 30+ years and where are we going?. Journal of Biological Inorganic Chemistry, 2014, 19, 127-131.	1.1	141
28	Effect of Lanthanide Complex Structure on Cell Viability and Association. Inorganic Chemistry, 2014, 53, 6013-6021.	1.9	17
29	Basis for Sensitive and Selective Time-Delayed Luminescence Detection of Hydroxyl Radical by Lanthanide Complexes. Inorganic Chemistry, 2013, 52, 9390-9398.	1.9	43
30	Scaling laws at the nanosize: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. Journal of Materials Chemistry B, 2013, 1, 2818.	2.9	112
31	The basis for the molecular recognition and the selective time-gated luminescence detection of ATP and GTP by a lanthanide complex. Chemical Science, 2013, 4, 4052.	3.7	64
32	A Magnetoplasmonic Imaging Agent for Copper(I) with Dual Response by MRI and Dark Field Microscopy. ACS Nano, 2013, 7, 5842-5849.	7.3	16
33	Magnetoluminescent Light Switches – Dual Modality in DNA Detection. Journal of the American Chemical Society, 2013, 135, 8966-8972.	6.6	25
34	A responsive particulate MRI contrast agent for copper(i): a cautionary tale. Dalton Transactions, 2012, 41, 8039.	1.6	15
35	A Selective Luminescent Probe for the Direct Time-Gated Detection of Adenosine Triphosphate. Journal of the American Chemical Society, 2012, 134, 16099-16102.	6.6	108
36	Magnetoluminescent Agents for Dual MRI and Time-Gated Fluorescence Imaging. European Journal of Inorganic Chemistry, 2012, 2012, 2141-2147.	1.0	11

VALERIE C PIERRE

#	Article	IF	CITATIONS
37	Surface functionalization of magnetic iron oxide nanoparticles for MRI applications – effect of anchoring group and ligand exchange protocol. Contrast Media and Molecular Imaging, 2011, 6, 189-199.	0.4	104
38	Conjugation Effects of Various Linkers on Gd(III) MRI Contrast Agents with Dendrimers: Optimizing the Hydroxypyridinonate (HOPO) Ligands with Nontoxic, Degradable Esteramide (EA) Dendrimers for High Relaxivity. Journal of the American Chemical Society, 2011, 133, 2390-2393.	6.6	90
39	Fe ₃ O ₄ @organic@Au: core–shell nanocomposites with high saturation magnetisation as magnetoplasmonic MRI contrast agents. Chemical Communications, 2011, 47, 2149-2151.	2.2	69
40	A ratiometric probe for the selective time-gated luminescence detection of potassium in water. Chemical Communications, 2011, 47, 541-543.	2.2	46
41	Sensitive and selective time-gated luminescence detection of hydroxyl radical in water. Chemical Communications, 2010, 46, 2423.	2.2	64
42	Principles of responsive lanthanide-based luminescent probes for cellular imaging. Analytical and Bioanalytical Chemistry, 2009, 394, 107-120.	1.9	242
43	A Bulky Rhodium Complex Bound to an Adenosine-Adenosine DNA Mismatch: General Architecture of the Metalloinsertion Binding Mode. Biochemistry, 2009, 48, 4247-4253.	1.2	73
44	A Highly Selective Luminescent Sensor for the Time-Gated Detection of Potassium. Journal of the American Chemical Society, 2009, 131, 434-435.	6.6	137
45	Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 429-434.	3.3	115
46	Metallo-intercalators and metallo-insertors. Chemical Communications, 2007, , 4565.	2.2	746
47	Insertion of a Bulky Rhodium Complex into a DNA Cytosineâ^'Cytosine Mismatch:  An NMR Solution Study. Journal of the American Chemical Society, 2007, 129, 12287-12295.	6.6	64
48	Substituent Effects on Gd(III)-Based MRI Contrast Agents:  Optimizing the Stability and Selectivity of the Complex and the Number of Coordinated Water Molecules1. Inorganic Chemistry, 2006, 45, 8355-8364.	1.9	82
49	Fe(III)-Templated Gd(III) Self-AssembliesA New Route toward Macromolecular MRI Contrast Agents1. Journal of the American Chemical Society, 2006, 128, 9272-9273.	6.6	46
50	Tuning the Coordination Number of Hydroxypyridonate-Based Gadolinium Complexes:Â Implications for MRI Contrast Agents1. Journal of the American Chemical Society, 2006, 128, 5344-5345.	6.6	49
51	Next Generation, High Relaxivity Gadolinium MRI Agents. Bioconjugate Chemistry, 2005, 16, 3-8.	1.8	301
52	Dendrimeric Gadolinium Chelate with Fast Water Exchange and High Relaxivity at High Magnetic Field Strength. Journal of the American Chemical Society, 2005, 127, 504-505.	6.6	84
53	Toward Optimized High-Relaxivity MRI Agents:Â Thermodynamic Selectivity of Hydroxypyridonate/Catecholate Ligands1. Inorganic Chemistry, 2004, 43, 8520-8525.	1.9	27
54	Toward Optimized High-Relaxivity MRI Agents:  The Effect of Ligand Basicity on the Thermodynamic Stability of Hexadentate Hydroxypyridonate/Catecholate Gadolinium(III) Complexes. Inorganic Chemistry, 2003, 42, 4930-4937.	1.9	77

#	Article	IF	CITATIONS
55	Carbonyl(η5-pentamethylcyclopentadienyl)(triflato-O)(triisopropylphosphine-P)ruthenium(II). Acta Crystallographica Section E: Structure Reports Online, 2002, 58, m482-m483.	0.2	2