Yang-sen Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2829276/publications.pdf

Version: 2024-02-01

331670 302126 2,123 41 21 39 h-index citations g-index papers 43 43 43 2254 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Monodispersed Ag ₃ PO ₄ nanocrystals loaded on the surface of spherical Bi ₂ MoO ₆ with enhanced photocatalytic performance. Dalton Transactions, 2013, 42, 1094-1101.	3.3	256
2	Engineering the Electronic Structure of MoS ₂ Nanorods by N and Mn Dopants for Ultra-Efficient Hydrogen Production. ACS Catalysis, 2018, 8, 7585-7592.	11.2	180
3	Atomically Dispersed Fe–Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction. ACS Energy Letters, 2021, 6, 379-386.	17.4	167
4	Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2013, 140-141, 306-316.	20.2	147
5	Homogeneous Carbon/Potassiumâ€Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Nearâ€Infrared Photocatalytic H ₂ Production. Advanced Materials, 2021, 33, e2101455.	21.0	144
6	Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 349-355.	20.2	136
7	Ag/AgBrâ€Grafted Graphiteâ€like Carbon Nitride with Enhanced Plasmonic Photocatalytic Activity under Visible Light. ChemCatChem, 2013, 5, 2343-2351.	3.7	119
8	Oxygen-doped crystalline carbon nitride with greatly extended visible-light-responsive range for photocatalytic H2 generation. Applied Catalysis B: Environmental, 2021, 283, 119636.	20.2	111
9	Construction of K ⁺ Ion Gradient in Crystalline Carbon Nitride to Accelerate Exciton Dissociation and Charge Separation for Visible Light H ₂ Production. ACS Catalysis, 2021, 11, 6995-7005.	11.2	100
10	In-Plane Charge Transport Dominates the Overall Charge Separation and Photocatalytic Activity in Crystalline Carbon Nitride. ACS Catalysis, 2022, 12, 4648-4658.	11.2	69
11	Highly Crystalline Kâ€Intercalated Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Alkenes and Alkynes Deuterations. Advanced Science, 2019, 6, 1801403.	11.2	67
12	K+-induced crystallization of polymeric carbon nitride to boost its photocatalytic activity for H2 evolution and hydrogenation of alkenes. Applied Catalysis B: Environmental, 2020, 268, 118457.	20.2	67
13	Grapheneâ€Oxideâ€Catalyzed Direct CHâ^'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie - International Edition, 2018, 57, 10848-10853.	13.8	63
14	Stable, carrier separation tailorable conjugated microporous polymers as a platform for highly efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2019, 245, 114-121.	20.2	58
15	Morphology-controlled synthesis of Ag3PO4 microcrystals for high performance photocatalysis. CrystEngComm, 2013, 15, 5407.	2.6	41
16	Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nature Communications, 2020, 11, 4722.	12.8	41
17	Inlay of Bi2O2CO3 nanoparticles onto Bi2WO6 nanosheets to build heterostructured photocatalysts. Dalton Transactions, 2014, 43, 3660.	3.3	38
18	Semi-heterogeneous photo-Cu-dual-catalytic cross-coupling reactions using polymeric carbon nitrides. Science Bulletin, 2022, 67, 71-78.	9.0	31

#	Article	IF	Citations
19	A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides. Science China Chemistry, 2020, 63, 386-392.	8.2	29
20	Visibleâ€Lightâ€Driven Photocatalytic Hydrogenation of Olefins Using Water as the H Source. ChemCatChem, 2019, 11, 2596-2599.	3.7	28
21	Precursor-directed synthesis of well-faceted brookite TiO2 single crystals for efficient photocatalytic performances. Journal of Materials Chemistry A, 2015, 3, 22361-22368.	10.3	27
22	Breaking the Limitation of Elevated Coulomb Interaction in Crystalline Carbon Nitride for Visible and Nearâ&Infrared Light Photoactivity. Advanced Science, 2022, 9, .	11.2	22
23	Promoting near-infrared photocatalytic activity of carbon-doped carbon nitride via solid alkali activation. Chinese Chemical Letters, 2021, 32, 3463-3468.	9.0	21
24	Degradation and mechanism of microcystin-LR by PbCrO4 nanorods driven by visible light. Chemosphere, 2020, 239, 124739.	8.2	19
25	Photoredoxâ€Catalyzed Simultaneous Olefin Hydrogenation and Alcohol Oxidation over Crystalline Porous Polymeric Carbon Nitride. ChemSusChem, 2021, 14, 3344-3350.	6.8	16
26	Cyanamide-defect-induced built-in electric field in crystalline carbon nitride for enhanced visible to near-infrared light photocatalytic activity. Inorganic Chemistry Frontiers, 2022, 9, 4320-4328.	6.0	14
27	Fluorescein supramolecular nanosheets: A novel organic photocatalyst for visible-light-driven H2 evolution from water. Science China Materials, 2018, 61, 1001-1006.	6.3	13
28	Donor Bandgap Engineering without Sacrificing the Reduction Ability of Photogenerated Electrons in Crystalline Carbon Nitride. ChemSusChem, 2021, 14, 4516-4524.	6.8	12
29	Grapheneâ€Oxideâ€Catalyzed Direct CHâ^'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, 11014-11019.	2.0	11
30	Construction of Defective Zinc–Cadmium–Sulfur Nanorods for Visibleâ€Lightâ€Driven Hydrogen Evolution Without the Use of Sacrificial Agents or Cocatalysts. ChemSusChem, 2020, 13, 756-762.	6.8	11
31	Harnessing Photoexcited Redox Centers of Semiconductor Photocatalysts for Advanced Synthetic Chemistry. Solar Rrl, 2021, 5, 2000444.	5.8	11
32	Photocatalytic Waterâ€Splitting Coupled with Alkanol Oxidation for Selective N â€alkylation Reactions over Carbon Nitride. ChemSusChem, 2021, 14, 582-589.	6.8	11
33	Engineering biocompatible TeSex nano-alloys as a versatile theranostic nanoplatform. National Science Review, 2021, 8, .	9.5	10
34	Engineering carbon nitride with cyanide groups for efficient photocatalytic alcohol oxidation and H2O2 production-Utilization of photogenerated electrons and holes. Applied Surface Science, 2022, 573, 151506.	6.1	10
35	PbCrO4 yellow-pigment nanorods: An efficient and stable visible-light-active photocatalyst for O2 evolution and photodegradation. Science China Materials, 2018, 61, 1033-1039.	6.3	9
36	Pyrimidine donor induced built-in electric field between melon chains in crystalline carbon nitride to facilitate excitons dissociation. Chinese Chemical Letters, 2023, 34, 107383.	9.0	6

#	Article	IF	CITATIONS
37	Insight into the Catalytic Behavior in Nitroarenes Reduction over Nonâ€Noble Metals Modified Polymer Carbon Nitride. ChemistrySelect, 2019, 4, 190-195.	1.5	4
38	Harnessing Photoexcited Redox Centers of Semiconductor Photocatalysts for Advanced Synthetic Chemistry. Solar Rrl, 2021, 5, 2170024.	5.8	2
39	Frontispiz: Graphene-Oxide-Catalyzed Direct CHâ^'CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, .	2.0	0
40	Frontispiece: Graphene-Oxide-Catalyzed Direct CHâ $^{\circ}$ CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
41	Photocatalysis: Highly Crystalline Kâ€Intercalated Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Alkenes and Alkynes Deuterations (Adv. Sci. 1/2019). Advanced Science, 2019, 6, 1970002.	11.2	0