Diana E Ciolacu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2829189/publications.pdf

Version: 2024-02-01

516215 642321 26 970 16 23 h-index g-index citations papers 29 29 29 1312 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Materials Science and Engineering C, 2012, 32, 452-463.	3.8	170
2	The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydrate Research, 2010, 345, 621-630.	1.1	108
3	Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. Materials, 2020, 13, 5270.	1.3	96
4	Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. Carbohydrate Polymers, 2016, 151, 392-400.	5.1	87
5	Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Materials Science and Engineering C, 2012, 32, 2508-2515.	3.8	72
6	Biosynthesis of dextran by Weissella confusa and its In vitro functional characteristics. International Journal of Biological Macromolecules, 2018, 107, 1765-1772.	3.6	55
7	Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Pharmaceutics, 2021, 13, 1125.	2.0	44
8	Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose. Cellulose, 2011, 18, 1527-1541.	2.4	42
9	Semi-interpenetrating Polymer Networks Containing Polysaccharides. I Xanthan/Lignin Networks. High Performance Polymers, 2007, 19, 603-620.	0.8	38
10	Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose, 2012, 19, 55-68.	2.4	35
11	Synthesis and characterization of some cellulose/chondroitin sulphate hydrogels and their evaluation as carriers for drug delivery. Carbohydrate Polymers, 2012, 87, 721-729.	5.1	34
12	Cellulose-Based Hydrogels for Medical/Pharmaceutical Applications. , 2018, , 401-439.		29
13	The influence of supramolecular structure of cellulose allomorphs on the interactions with cellulose-binding domain, CBD3b from Paenibacillus barcinonensis. Bioresource Technology, 2014, 157, 14-21.	4.8	23
14	Supramolecular Structure ―A Key Parameter for Cellulose Biodegradation. Macromolecular Symposia, 2008, 272, 136-142.	0.4	22
15	New Green Hydrogels Based on Lignin. Journal of Nanoscience and Nanotechnology, 2018, 18, 2811-2822.	0.9	21
16	CELLULOSE-BASED HYDROGELS IN TISSUE ENGINEERING APPLICATIONS. Cellulose Chemistry and Technology, 2019, 53, 907-923.	0.5	20
17	Changes of supramolecular cellulose structure and accessibility induced by the processive endoglucanase Cel9B from Paenibacillus barcinonensis. Cellulose, 2014, 21, 203-219.	2.4	17
18	Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines, 2022, 10, 1095.	1.4	15

#	Article	IF	CITATIONS
19	Environmentally Friendly Polylactic Acid/Modified Lignosulfonate Biocomposites. Journal of Polymers and the Environment, 2017, 25, 884-902.	2.4	10
20	Biochemical Modification of Lignocellulosic Biomass. , 2018, , 315-350.		10
21	Cellulose derivatives with adamantoyl groups. Journal of Applied Polymer Science, 2006, 100, 105-112.	1.3	6
22	Structure-Property Relationships in Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-32.	0.6	4
23	Influence of Gel Stage from Cellulose Dissolution in NaOH-Water System on the Performances of Cellulose Allomorphs-Based Hydrogels. Gels, 2022, 8, 410.	2.1	4
24	Structure-Property Relationships in Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 65-95.	0.6	3
25	Chemical Treatment of Lignosulfonates Under DBD Plasma Conditions. I. Spectral Characterization. Journal of Polymers and the Environment, 2021, 29, 900-921.	2.4	1
26	Biological pretreatments of lignocellulosic fibers and their effects on biocomposites performance., 2022, , 147-186.		O