
Detcho A Stoyanovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/282901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of glutathione mediated S-(de)nitrosylation in complex biological matrices by immuno-spin trapping and identification of two novel substrates. Nitric Oxide - Biology and Chemistry, 2022, 118, 26-30.	2.7	3
2	15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. Journal of Clinical Investigation, 2022, 132, .	8.2	45
3	Immunoâ€5pin Trapping Method for the Analysis of Sâ€Nitrosylated Proteins. Current Protocols, 2021, 1, e262.	2.9	0
4	Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nature Chemical Biology, 2020, 16, 278-290.	8.0	299
5	1-Oxo-2,2,6,6-tetramethylpiperidinium bromide converts α-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. Scientific Reports, 2018, 8, 15323.	3.3	8
6	N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical. Scientific Reports, 2016, 6, 38773.	3.3	22
7	Structural Re-arrangement and Peroxidase Activation of Cytochrome c by Anionic Analogues of Vitamin E, Tocopherol Succinate and Tocopherol Phosphate. Journal of Biological Chemistry, 2014, 289, 32488-32498.	3.4	15
8	Improved spatial resolution of matrix-assisted laser desorption/ionization imaging of lipids in the brain by alkylated derivatives of 2,5-dihydroxybenzoic acid. Rapid Communications in Mass Spectrometry, 2014, 28, 403-412.	1.5	17
9	Design and Synthesis of a Mitochondria-Targeted Mimic of Glutathione Peroxidase, MitoEbselen-2, as a Radiation Mitigator. ACS Medicinal Chemistry Letters, 2014, 5, 1304-1307.	2.8	33
10	Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer, 2014, 14, 527.	2.6	79
11	Glutathione and thioredoxin type 1 cooperatively denitrosate HepG2 cells-derived cytosolic S-nitrosoproteins. Organic and Biomolecular Chemistry, 2013, 11, 4433.	2.8	7
12	A critical role for increased labile zinc in reducing sensitivity of cultured sheep pulmonary artery endothelial cells to LPS-induced apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1287-L1295.	2.9	25
13	Mitochondria targeting of nonâ€peroxidizable triphenylphosphonium conjugated oleic acid protects mouse embryonic cells against apoptosis: Role of cardiolipin remodeling. FEBS Letters, 2012, 586, 235-241.	2.8	27
14	A Manganese–Porphyrin Complex Decomposes H ₂ O ₂ , Inhibits Apoptosis, and Acts as a Radiation Mitigator in Vivo. ACS Medicinal Chemistry Letters, 2011, 2, 814-817.	2.8	26
15	Assessments of Thiyl Radicals in Biosystems: Difficulties and New Applications. Analytical Chemistry, 2011, 83, 6432-6438.	6.5	33
16	A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nature Communications, 2011, 2, 497.	12.8	91
17	Cytoprotective effects of albumin, nitrosated or reduced, in cultured rat pulmonary vascular cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L526-L533.	2.9	8
18	Protection of normal brain cells from γ-irradiation-induced apoptosis by a mitochondria-targeted triphenyl-phosphonium-nitroxide: a possible utility in glioblastoma therapy. Journal of Neuro-Oncology, 2010, 100, 1-8.	2.9	20

DETCHO A STOYANOVSKY

#	Article	IF	CITATIONS
19	Nitric oxide and thioredoxin type 1 modulate the activity of caspase 8 in HepG2 cells. Biochemical and Biophysical Research Communications, 2010, 391, 1127-1130.	2.1	25
20	Unusual peroxidase activity of polynitroxylated pegylated hemoglobin: Elimination of H2O2 coupled with intramolecular oxidation of nitroxides. Biochemical and Biophysical Research Communications, 2010, 399, 139-143.	2.1	12
21	Mitochondriaâ€targeted (2â€hydroxyaminoâ€vinyl)â€triphenylâ€phosphonium releases NO and protects mouse embryonic cells against irradiationâ€induced apoptosis. FEBS Letters, 2009, 583, 1945-1950.	2.8	27
22	Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells. FEBS Letters, 2009, 583, 3525-3530.	2.8	21
23	Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radical Biology and Medicine, 2009, 46, 1439-1453.	2.9	382
24	Mitochondriaâ€ŧargeted disruptors and inhibitors of cytochrome <i>c</i> /cardiolipin peroxidase complexes: A new strategy in antiâ€apoptotic drug discovery. Molecular Nutrition and Food Research, 2009, 53, 104-114.	3.3	81
25	Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactionsâ~†. Advanced Drug Delivery Reviews, 2009, 61, 1375-1385.	13.7	103
26	Nitric oxide regulates the 26S proteasome in vascular smooth muscle cells. Nitric Oxide - Biology and Chemistry, 2009, 20, 279-288.	2.7	54
27	A Mitochondria-Targeted Triphenylphosphonium-Conjugated Nitroxide Functions as a Radioprotector/Mitigator. Radiation Research, 2009, 172, 706-717.	1.5	76
28	Studies toward the analysis of S-nitrosoproteins. Organic and Biomolecular Chemistry, 2009, 7, 232-234.	2.8	24
29	Activation of NO donors in mitochondria: Peroxidase metabolism of (2â€hydroxyaminoâ€vinyl)â€triphenylâ€phosphonium by cytochrome <i>c</i> releases NO and protects cells against apoptosis. FEBS Letters, 2008, 582, 725-728.	2.8	21
30	Corrigendum to "Activation of NO donors in mitochondria: Peroxidase metabolism of (2-hydroxyamino-vinyl)-triphenyl-phosphonium by cytochromecreleases NO and protects cells against apoptosis―[FEBS Lett. 582 (2008) 725-728]. FEBS Letters, 2008, 582, 1634-1634.	2.8	0
31	Nitrosative Stress Inhibits the Aminophospholipid Translocase Resulting in Phosphatidylserine Externalization and Macrophage Engulfment. Journal of Biological Chemistry, 2007, 282, 8498-8509.	3.4	74
32	Nitric oxide-induced inhibition of smooth muscle cell proliferation involves S-nitrosation and inactivation of RhoA. American Journal of Physiology - Cell Physiology, 2007, 292, C824-C831.	4.6	69
33	Cellular non-heme iron modulates apoptosis and caspase 3 activity. , 2007, , 253-268.		1
34	Thioredoxin Catalyzes the Denitrosation of Low-Molecular Mass and Protein S-Nitrosothiols. Biochemistry, 2007, 46, 8472-8483.	2.5	110
35	Targeting nitroxides to mitochondria: location, location, location, and …concentrationâ~†Highlight Commentary on "Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: Role of mitochondrial superoxide― Free Radical Biology and Medicine, 2007, 43, 348-350.	2.9	16
36	Nitric Oxide Inhibits Peroxidase Activity of Cytochrome c· Cardiolipin Complex and Blocks Cardiolipin Oxidation. Journal of Biological Chemistry, 2006, 281, 14554-14562.	3.4	88

DETCHO A STOYANOVSKY

#	Article	IF	CITATIONS
37	Nitroxyl triggers Ca2+ release from skeletal and cardiac sarcoplasmic reticulum by oxidizing ryanodine receptors. Cell Calcium, 2005, 37, 87-96.	2.4	105
38	Effects of pO2 on the activation of skeletal muscle ryanodine receptors by NO: A cautionary note. Cell Calcium, 2005, 38, 481-488.	2.4	33
39	Glutathione depletion renders rat hepatocytes sensitive to nitric oxide donor-mediated toxicity. Hepatology, 2005, 42, 598-607.	7.3	27
40	Thioredoxin and Lipoic Acid Catalyze the Denitrosation of Low Molecular Weight and ProteinS-Nitrosothiols. Journal of the American Chemical Society, 2005, 127, 15815-15823.	13.7	151
41	Effects of pH on the Cytotoxicity of Sodium Trioxodinitrate (Angeli's Salt). Journal of Medicinal Chemistry, 2004, 47, 210-217.	6.4	27
42	Formation of Nitroxyl and Hydroxyl Radical in Solutions of Sodium Trioxodinitrate. Journal of Biological Chemistry, 2003, 278, 42761-42768.	3.4	25
43	Comparative Metabolism of N-tert-Butyl-N-[1-(1-oxy-pyridin-4-yl)-ethyl]- and N-tert-Butyl-N-(1-phenyl-ethyl)-nitroxide by the Cytochrome P450 Monooxygenase System. Chemical Research in Toxicology, 2002, 15, 749-753.	3.3	8
44	An ESR and HPLC-EC Assay for the Detection of Alkyl Radicals. Chemical Research in Toxicology, 2001, 14, 1239-1246.	3.3	18
45	Preparation and Properties of S-Nitroso-l-Cysteine Ethyl Ester, an Intracellular Nitrosating Agent. Journal of Medicinal Chemistry, 2001, 44, 2035-2038.	6.4	52
46	Oxidation of the Ketoxime Acetoxime to Nitric Oxide by Oxygen Radical-Generating Systems. Nitric Oxide - Biology and Chemistry, 2001, 5, 413-424.	2.7	26
47	Activation of stress-activated protein kinase in osteoarthritic cartilage: evidence for nitric oxide dependence. Osteoarthritis and Cartilage, 2001, 9, 294-299.	1.3	83
48	Mitochondrial permeability transition induced by 1-hydroxyethyl radical. Free Radical Biology and Medicine, 2000, 28, 273-280.	2.9	31
49	ESR and HPLC-EC Analysis of the Interaction of Hydroxyl Radical with DMSO:Â Rapid Reduction and Quantification of POBN and PBN Nitroxides. Analytical Chemistry, 1999, 71, 715-721.	6.5	45
50	Metabolites of acetaminophen trigger Ca2+ release from liver microsomes. Toxicology Letters, 1999, 106, 23-29.	0.8	10
51	Metabolism of Carbon Tetrachloride to Trichloromethyl Radical:  An ESR and HPLC-EC Study. Chemical Research in Toxicology, 1999, 12, 730-736.	3.3	50
52	Decomposition of Sodium Trioxodinitrate (Angeli's Salt) To Hydroxyl Radical: An ESR Spin-Trapping Study. Journal of the American Chemical Society, 1999, 121, 5093-5094.	13.7	29
53	Interaction of 1-Hydroxyethyl Radical with Antioxidant Enzymes. Archives of Biochemistry and Biophysics, 1999, 372, 355-359.	3.0	16
54	Interaction of 1-Hydroxyethyl Radical With Glutathione, Ascorbic Acid and α-Tocopherol. Free Radical Biology and Medicine, 1998, 24, 132-138.	2.9	47

#	Article	IF	CITATIONS
55	Redox-Cycling of Iron Ions Triggers Calcium Release From Liver Microsomes. Free Radical Biology and Medicine, 1998, 24, 745-753.	2.9	12
56	ESR and HPLC-EC analysis of ethanol oxidation to 1-hydroxyethyl radical: rapid reduction and quantification of POBN and PBN nitroxides. Free Radical Biology and Medicine, 1998, 25, 536-545.	2.9	23
57	Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium, 1997, 21, 19-29.	2.4	252
58	Thiol Oxidation and Cytochrome P450-Dependent Metabolism of CCl4Triggers Ca2+Release from Liver Microsomesâ€. Biochemistry, 1996, 35, 15839-15845.	2.5	41
59	Detection and Characterization of the Electron Paramagnetic Resonance-Silent Glutathionyl-5,5-dimethyl-1-pyrrolineN-Oxide Adduct Derived from Redox Cycling of Phenoxyl Radicals in Model Systems and HL-60 Cells. Archives of Biochemistry and Biophysics, 1996, 330, 3-11.	3.0	48
60	Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Current Eye Research, 1995, 14, 181-189.	1.5	87
61	Phenoxyl Radical-Induced Thiol-Dependent Generation of Reactive Oxygen Species: Implications for Benzene Toxicity. Archives of Biochemistry and Biophysics, 1995, 317, 315-323.	3.0	57
62	Antioxidant Paradoxes of Phenolic Compounds: Peroxyl Radical Scavenger and Lipid Antioxidant, Etoposide (VP-16), Inhibits Sarcoplasmic Reticulum Ca2+-ATPase via Thiol Oxidation by Its Phenoxyl Radical. Archives of Biochemistry and Biophysics, 1995, 321, 140-152.	3.0	39
63	Ubiquinone-Dependent Recycling of Vitamin E Radicals by Superoxide. Archives of Biochemistry and Biophysics, 1995, 323, 343-351.	3.0	159
64	Reduction of Phenoxyl Radicals by Thioredoxin Results in Selective Oxidation of Its SH-Groups to Disulfides. An Antioxidant Function of Thioredoxin. Biochemistry, 1995, 34, 4765-4772.	2.5	46
65	Ascorbate Is the Primary Reductant of the Phenoxyl Radical of Etoposide in the Presence of Thiols both in Cell Homogenates and in Model Systems. Biochemistry, 1994, 33, 9651-9660.	2.5	70
66	Ascorbate/Iron Activates Ca2+-Release Channels of Skeletal Sarcoplasmic Reticulum Vesicles Reconstituted in Lipid Bilayers. Archives of Biochemistry and Biophysics, 1994, 308, 214-221.	3.0	39
67	[63] Interactions of phenoxyl radical of antitumor drug, etoposide, with reductants in solution and in cell and nuclear homogenates: Electron spin resonance and high-performance liquid chromatography. Methods in Enzymology, 1994, 234, 631-642.	1.0	10
68	[33] Assay of ubiquinones and ubiquinols as antioxidants. Methods in Enzymology, 1994, 234, 343-354.	1.0	30
69	Tyrosinase-Induced Phenoxyl Radicals of Etoposide (VP-16): Interaction with Reductants in Model Systems, K562 Leukemic Cell and Nuclear Homogenates. Free Radical Research Communications, 1993, 19, 371-386.	1.8	12
70	Iron binding to alpha-tocopherol-containing phospholipid liposomes. Biochemical and Biophysical Research Communications, 1989, 160, 834-838.	2.1	24
71	Lipid peroxidation activation and cytochrome P-450 decrease in rat liver endoplasmic reticulum under oxidative stress. Toxicology Letters, 1989, 47, 119-123.	0.8	14