Michael C Breadmore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/282882/publications.pdf

Version: 2024-02-01

209 papers 8,445 citations

45 h-index 81

g-index

216 all docs

216 docs citations

216 times ranked

6943 citing authors

#	Article	IF	CITATIONS
1	3D printed microfluidic devices: enablers and barriers. Lab on A Chip, 2016, 16, 1993-2013.	6.0	816
2	Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes. Analytical Chemistry, 2014, 86, 3124-3130.	6.5	436
3	Microchip-Based Purification of DNA from Biological Samples. Analytical Chemistry, 2003, 75, 1880-1886.	6.5	331
4	Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms. Analytical Chemistry, 2017, 89, 3858-3866.	6.5	300
5	Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis, 2002, 23, 727-733.	2.4	233
6	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips. Electrophoresis, 2007, 28, 254-281.	2.4	183
7	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2010–2012). Electrophoresis, 2013, 34, 29-54.	2.4	163
8	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012–2014). Electrophoresis, 2015, 36, 36-61.	2.4	138
9	Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab on A Chip, 2019, 19, 35-49.	6.0	135
10	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008–2010). Electrophoresis, 2011, 32, 127-148.	2.4	131
11	Identification of Inorganic Improvised Explosive Devices by Analysis of Postblast Residues Using Portable Capillary Electrophoresis Instrumentation and Indirect Photometric Detection with a Light-Emitting Diode. Analytical Chemistry, 2007, 79, 7005-7013.	6.5	125
12	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2006–2008). Electrophoresis, 2009, 30, 230-248.	2.4	121
13	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016–2018). Electrophoresis, 2019, 40, 17-39.	2.4	113
14	Capillary and microchip electrophoresis: Challenging the common conceptions. Journal of Chromatography A, 2012, 1221, 42-55.	3.7	110
15	One-Step Fabrication of a Microfluidic Device with an Integrated Membrane and Embedded Reagents by Multimaterial 3D Printing. Analytical Chemistry, 2017, 89, 4701-4707.	6.5	106
16	On-Column Ion-Exchange Preconcentration of Inorganic Anions in Open Tubular Capillary Electrochromatography with Elution Using Transient-Isotachophoretic Gradients. 3. Implementation and Method Development. Analytical Chemistry, 2002, 74, 2112-2118.	6.5	101
17	Identification of inorganic ions in postâ€blast explosive residues using portable CE instrumentation and capacitively coupled contactless conductivity detection. Electrophoresis, 2008, 29, 4593-4602.	2.4	96
18	Approaches to enhancing the sensitivity of capillary electrophoresis methods for the determination of inorganic and small organic anions. Electrophoresis, 2001, 22, 2464-2489.	2.4	94

#	Article	IF	Citations
19	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis, 2017, 38, 33-59.	2.4	87
20	Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues. Journal of Chromatography A, 2008, 1182, 205-214.	3.7	86
21	100 000-Fold Concentration of Anions in Capillary Zone Electrophoresis Using Electroosmotic Flow Controlled Counterflow Isotachophoretic Stacking under Field Amplified Conditions. Analytical Chemistry, 2008, 80, 6373-6381.	6.5	82
22	Boronate functionalised polymer monoliths for microscale affinity chromatography. Analyst, The, 2006, 131, 1094.	3.5	77
23	Three-Dimensional Printing of Abrasive, Hard, and Thermally Conductive Synthetic Microdiamond–Polymer Composite Using Low-Cost Fused Deposition Modeling Printer. ACS Applied Materials & Interfaces, 2019, 11, 4353-4363.	8.0	73
24	Hydroxypropyl Cellulose as an Adsorptive Coating Sieving Matrix for DNA Separations:Â Artificial Neural Network Optimization for Microchip Analysis. Analytical Chemistry, 2003, 75, 986-994.	6.5	71
25	Identification of Inorganic Improvised Explosive Devices Using Sequential Injection Capillary Electrophoresis and Contactless Conductivity Detection. Analytical Chemistry, 2011, 83, 9068-9075.	6.5	71
26	Microfluidic isotachophoresis: A review. Electrophoresis, 2013, 34, 1493-1509.	2.4	71
27	Using Printing Orientation for Tuning Fluidic Behavior in Microfluidic Chips Made by Fused Deposition Modeling 3D Printing. Analytical Chemistry, 2017, 89, 12805-12811.	6.5	66
28	On-Capillary Ion-Exchange Preconcentration of Inorganic Anions in Open-Tubular Capillary Electrochromatography with Elution Using Transient-Isotachophoretic Gradients. 2. Characterization of the Isotachophoretic Gradient. Analytical Chemistry, 2001, 73, 820-828.	6.5	65
29	Silica nanoparticle-templated methacrylic acid monoliths for in-line solid-phase extraction–capillary electrophoresis of basic analytes. Journal of Chromatography A, 2009, 1216, 4933-4940.	3.7	63
30	Multimaterial 3D Printed Fluidic Device for Measuring Pharmaceuticals in Biological Fluids. Analytical Chemistry, 2019, 91, 1758-1763.	6.5	61
31	Ion chromatography on-chip. Journal of Chromatography A, 2001, 924, 233-238.	3.7	59
32	Dynamic computer simulations of electrophoresis: A versatile research and teaching tool. Electrophoresis, 2010, 31, 726-754.	2.4	58
33	A rapid quantitative determination of phenolic acids in Brassica oleracea by capillary zone electrophoresis. Food Chemistry, 2011, 127, 797-801.	8.2	58
34	On-line simultaneous and rapid separation of anions and cations from a single sample using dual-capillary sequential injection-capillary electrophoresis. Analytica Chimica Acta, 2013, 781, 80-87.	5.4	58
35	Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. Plant Physiology and Biochemistry, 2016, 109, 346-354.	5.8	58
36	Low-Cost Passive Sampling Device with Integrated Porous Membrane Produced Using Multimaterial 3D Printing. Analytical Chemistry, 2018, 90, 12081-12089.	6.5	55

#	Article	IF	CITATIONS
37	Online sample preâ€concentration via dynamic pH junction in capillary and microchip electrophoresis. Journal of Separation Science, 2011, 34, 2800-2821.	2.5	53
38	Capillary electrophoresis of neurotransmitters using in-line solid-phase extraction and preconcentration using a methacrylate-based weak cation-exchange monolithic stationary phase and a pH step gradient. Journal of Chromatography A, 2007, 1175, 117-126.	3.7	51
39	Maskless photolithography using UV LEDs. Lab on A Chip, 2008, 8, 1402.	6.0	51
40	Electrokinetic supercharging for on-line preconcentration of seven non-steroidal anti-inflammatory drugs in water samples. Journal of Chromatography A, 2008, 1189, 278-284.	3.7	50
41	Microfluidic chips for capillary electrophoresis with integrated electrodes for capacitively coupled conductivity detection based on printed circuit board technology. Sensors and Actuators B: Chemical, 2011, 159, 307-313.	7.8	50
42	Open-tubular ion-exchange capillary electrochromatography of inorganic anions. Analyst, The, 2000, 125, 1235-1241.	3.5	49
43	Counter-flow electrokinetic supercharging for the determination of non-steroidal anti-inflammatory drugs in water samples. Journal of Chromatography A, 2009, 1216, 3380-3386.	3.7	49
44	3D printed LED based on-capillary detector housing with integrated slit. Analytica Chimica Acta, 2017, 965, 131-136.	5.4	49
45	High-Resolution Computer Simulations of Stacking of Weak Bases Using a Transient pH Boundary in Capillary Electrophoresis. 1. Concept and Impact of Sample Ionic Strength. Analytical Chemistry, 2006, 78, 538-546.	6.5	47
46	Dynamic computer simulations of electrophoresis: Three decades of active research. Electrophoresis, 2009, 30, S16-26.	2.4	46
47	Artificial neural networks for computer-aided modelling and optimisation in micellar electrokinetic chromatography. Journal of Chromatography A, 1999, 850, 345-353.	3.7	45
48	Unlimitedâ€volume stacking of ions in capillary electrophoresis. Part 1: Stationary isotachophoretic stacking of anions. Electrophoresis, 2008, 29, 1082-1091.	2.4	45
49	Towards a microchip-based chromatographic platform. Part 1: Evaluation of sol-gel phases for capillary electrochromatography. Electrophoresis, 2002, 23, 3487-3495.	2.4	44
50	Electrokinetic superchargingâ€electrospray ionisationâ€mass spectrometry for separation and onâ€line preconcentration of hypolipidaemic drugs in water samples. Electrophoresis, 2010, 31, 1184-1193.	2.4	44
51	Precise, accurate and user-independent blood collection system for dried blood spot sample preparation. Analytical and Bioanalytical Chemistry, 2018, 410, 3315-3323.	3.7	44
52	Determination of ribavirin in human serum and plasma by capillary electrophoresis. Electrophoresis, 2004, 25, 1615-1622.	2.4	42
53	Novel Instrument for Automated p <i>K</i> _a Determination by Internal Standard Capillary Electrophoresis. Analytical Chemistry, 2015, 87, 6165-6172.	6.5	42
54	Nanoporous Membranes for Microfluidic Concentration Prior to Electrophoretic Separation of Proteins in Urine. Analytical Chemistry, 2016, 88, 8257-8263.	6.5	42

#	Article	IF	Citations
55	Thread based electrofluidic platform for direct metabolite analysis in complex samples. Analytica Chimica Acta, 2018, 1000, 283-292.	5.4	41
56	Polymeric Microchip for the Simultaneous Determination of Anions and Cations by Hydrodynamic Injection Using a Dual-Channel Sequential Injection Microchip Electrophoresis System. Analytical Chemistry, 2014, 86, 3380-3388.	6.5	40
57	Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond. Scientific Reports, 2017, 7, 15109.	3.3	39
58	Recent trends in capillary and micro-chip electrophoretic instrumentation for field-analysis. Trends in Environmental Analytical Chemistry, 2018, 18, 1-10.	10.3	38
59	Integrated 3D printed heaters for microfluidic applications: Ammonium analysis within environmental water. Analytica Chimica Acta, 2020, 1098, 94-101.	5.4	38
60	Non-aqueous capillary electrophoresis with red light emitting diode absorbance detection for the analysis of basic dyes. Analytica Chimica Acta, 2006, 580, 188-193.	5.4	37
61	Extraction and on-line concentration of flavonoids in Brassica oleracea by capillary electrophoresis using large volume sample stacking. Food Chemistry, 2012, 133, 205-211.	8.2	37
62	Electrophoretic separations on paper: Past, present, and future-A review. Analytica Chimica Acta, 2017, 985, 7-23.	5.4	37
63	Photoinitiated polymerisation of monolithic stationary phases in polyimide coated capillaries using visible region LEDs. Chemical Communications, 2008, , 6504.	4.1	36
64	Utilisation of pH stacking in conjunction with a highly absorbing chromophore, 5-aminofluorescein, to improve the sensitivity of capillary electrophoresis for carbohydrate analysis. Journal of Chromatography A, 2008, 1200, 84-91.	3.7	35
65	Ionic liquid-based liquid phase microextraction with direct injection for capillary electrophoresis. Journal of Chromatography A, 2011, 1218, 1347-1352.	3.7	35
66	Multidimensional liquid-phase separations combining both chromatography and electrophoresis – A review. Analytica Chimica Acta, 2017, 950, 7-31.	5.4	35
67	On-capillary ion-exchange preconcentration of inorganic anions using open-tubular capillaries followed by elution with a transient isotachophoretic gradient. Analyst, The, 2000, 125, 799-802.	3.5	34
68	One step multi-material 3D printing for the fabrication of a photometric detector flow cell. Analytica Chimica Acta, 2020, 1097, 127-134.	5.4	34
69	Indirect spectrophotometric detection of inorganic anions in ion-exchange capillary electrochromatography. Electrophoresis, 2000, 21, 3073-3080.	2.4	33
70	Electrokinetic and hydrodynamic injection: making the right choice for capillary electrophoresis. Bioanalysis, 2009, 1, 889-894.	1.5	33
71	Analysis of phenolic acids by non-aqueous capillary electrophoresis after electrokinetic supercharging. Journal of Chromatography A, 2010, 1217, 7282-7287.	3.7	33
72	Optimisation of the separation of anions by ion chromatography–capillary electrophoresis using indirect UV detection. Journal of Chromatography A, 2001, 920, 31-40.	3.7	32

#	Article	IF	CITATIONS
73	A simple PDMS-based electro-fluidic interface for microchip electrophoretic separations. Analyst, The, 2002, 127, 1558-1563.	3.5	32
74	Use of ionic polymers as stationary and pseudo-stationary phases in the separation of ions by capillary electrophoresis and capillary electrochromatography. Journal of Chromatography A, 2002, 942, 11-32.	3.7	32
75	Capillary electrophoresis evidence for the stereoselective metabolism of itraconazole in man. Electrophoresis, 2003, 24, 2588-2597.	2.4	32
76	A three-dimensional printed electromembrane extraction device for capillary electrophoresis. Journal of Chromatography A, 2019, 1595, 215-220.	3.7	32
77	Manipulation of separation selectivity for alkali metals and ammonium in ion-exchange capillary electrochromatography using a suspension of cation exchange particles in the electrolyte as a pseudostationary phase. Electrophoresis, 1999, 20, 1987-1992.	2.4	31
78	Dynamic highâ€resolution computer simulation of electrophoretic enantiomer separations with neutral cyclodextrins as chiral selectors. Electrophoresis, 2012, 33, 958-969.	2.4	31
79	Trends in analytical separations of magnetic (nano)particles. TrAC - Trends in Analytical Chemistry, 2019, 114, 89-97.	11.4	31
80	Determination of itraconazole and hydroxyitraconazole in human serum and plasma by micellar electrokinetic chromatography. Journal of Chromatography A, 2003, 1014, 57-70.	3.7	30
81	Highâ€resolution electrophoretic simulations: Performance characteristics of oneâ€dimensional simulators. Electrophoresis, 2011, 32, 532-541.	2.4	30
82	Salinity effects on chloroplast PSII performance in glycophytes and halophytes. Functional Plant Biology, 2016, 43, 1003.	2.1	30
83	Peak shapes in open tubular ion-exchange capillary electrochromatography of inorganic anions. Journal of Chromatography A, 2000, 892, 303-313.	3.7	29
84	Recent significant developments in detection and method development for the determination of inorganic ions by CE. Electrophoresis, 2009, 30, S53-67.	2.4	29
85	Strategies for the on-line preconcentration and separation of hypolipidaemic drugs using micellar electrokinetic chromatography. Journal of Chromatography A, 2010, 1217, 386-393.	3.7	29
86	Capillary electrophoresis for the analysis of paralytic shellfish poisoning toxins in shellfish: Comparison of detection methods. Electrophoresis, 2014, 35, 1496-1503.	2.4	28
87	Microfluidic culture platform for studying neuronal response to mild to very mild axonal stretch injury. Biomicrofluidics, 2014, 8, 044110.	2.4	28
88	Transient isotachophoresis-capillary zone electrophoresis with contactless conductivity and ultraviolet detection for the analysis of paralytic shellfish toxins in mussel samples. Journal of Chromatography A, 2014, 1364, 295-302.	3.7	27
89	On-line sequential injection-capillary electrophoresis for near-real-time monitoring of extracellular lactate in cell culture flasks. Journal of Chromatography A, 2014, 1323, 157-162.	3.7	27
90	Acidâ€induced transient isotachophoretic stacking of basic drugs in coâ€electroosmotic flow capillary zone electrophoresis. Journal of Separation Science, 2012, 35, 60-65.	2.5	26

#	Article	IF	CITATIONS
91	Analysis of flavonoids by non-aqueous capillary electrophoresis with 1-ethyl-3-methylimidazolium ionic-liquids as background electrolytes. Journal of Chromatography A, 2013, 1319, 160-165.	3.7	26
92	Evaporative membrane modulation for comprehensive two-dimensional liquid chromatography. Analytica Chimica Acta, 2018, 1000, 303-309.	5.4	26
93	Preconcentration and frontal electroelution of amino acids for in-line solid-phase extraction–capillary electrophoresis. Analytica Chimica Acta, 2006, 556, 121-126.	5.4	25
94	Pressure-assisted electrokinetic supercharging for the enhancement of non-steroidal anti-inflammatory drugs. Journal of Chromatography A, 2011, 1218, 6750-6755.	3.7	25
95	Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: Separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis. Journal of Chromatography A, 2013, 1286, 216-221.	3.7	25
96	Fibre-based electrofluidics on low cost versatile 3D printed platforms for solute delivery, separations and diagnostics; from small molecules to intact cells. Analyst, The, 2016, 141, 6422-6431.	3.5	25
97	The role of gratitude in enhancing the relationship between doctoral research students and their supervisors. Teaching in Higher Education, 2017, 22, 621-638.	2.6	25
98	Mild and repetitive very mild axonal stretch injury triggers cystoskeletal mislocalization and growth cone collapse. PLoS ONE, 2017, 12, e0176997.	2.5	25
99	Inâ€plane alloy electrodes for capacitively coupled contactless conductivity detection in poly(methylmethacrylate) electrophoretic chips. Electrophoresis, 2013, 34, 2980-2987.	2.4	24
100	Determination of inorganic anions by capillary electrochromatography. TrAC - Trends in Analytical Chemistry, 2001, 20, 355-364.	11.4	23
101	Towards a microchip-based chromatographic platform. PartÂ2: Sol-gel phases modified with polyelectrolyte multilayers for capillary electrochromatography. Electrophoresis, 2003, 24, 1261-1270.	2.4	23
102	Electroosmotic flow-balanced isotachophoretic stacking with continuous electrokinetic injection for the concentration of anions in high conductivity samples. Journal of Chromatography A, 2010, 1217, 3900-3906.	3.7	23
103	Separation of Nile Blue-labelled fatty acids by CE with absorbance detection using a red light-emitting diode. Electrophoresis, 2007, 28, 1252-1258.	2.4	22
104	Highâ€resolution computer simulations of EKC. Electrophoresis, 2009, 30, 570-578.	2.4	22
105	Fast analysis of phenolic acids by electrokinetic superchargingâ€nonaqueous capillary electrophoresis. Journal of Separation Science, 2010, 33, 2140-2144.	2.5	22
106	Analysis of flavonoids by capillary zone electrophoresis with electrokinetic supercharging. Analyst, The, 2011, 136, 4486.	3.5	22
107	Capillary electrophoresis for monitoring bioprocesses. Electrophoresis, 2013, 34, 1465-1482.	2.4	22
108	lon transport in broad bean leaf mesophyll under saline conditions. Planta, 2014, 240, 729-743.	3.2	22

#	Article	IF	CITATIONS
109	Lab-on-a-Chip device with laser-patterned polymer electrodes for high voltage application and contactless conductivity detection. Chemical Communications, 2012, 48, 9287.	4.1	21
110	Rapid and sensitive microbial analysis by capillary isotachophoresis with continuous electrokinetic injection under field amplified conditions. Electrophoresis, 2013, 34, 1657-1662.	2.4	21
111	Capillary electrophoresis for automated on-line monitoring of suspension cultures: Correlating cell density, nutrients and metabolites in near real-time. Analytica Chimica Acta, 2016, 920, 94-101.	5.4	21
112	Electrokinetic supercharging in nonaqueous capillary electrophoresis for online preconcentration and determination of tamoxifen and its metabolites in human plasma. Journal of Chromatography A, 2016, 1461, 185-191.	3.7	21
113	Theoretical Migration Model for Micellar Capillary Electrophoresis and Its Application to the Separation of Anionic Metal Complexes of HEDTC and CDTA. Analytical Chemistry, 1999, 71, 1826-1833.	6.5	20
114	Packing procedures for high efficiency, short ion-exchange columns for rapid separation of inorganic anions. Journal of Chromatography A, 2008, 1208, 95-100.	3.7	20
115	Selective extraction and elution of weak bases by in-line solid-phase extraction capillary electrophoresis using a pH step gradient and a weak cation-exchange monolith. Analyst, The, 2008, 133, 1380.	3.5	20
116	Coupled reversed-phase and ion chromatographic system for the simultaneous identification of inorganic and organic explosives. Journal of Chromatography A, 2011, 1218, 3007-3012.	3.7	20
117	Insight into the mechanism of transient trapping in micellar electrokinetic chromatography. Electrophoresis, 2011, 32, 542-549.	2.4	20
118	Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality. Scientific Reports, 2015, 5, 17334.	3.3	20
119	Isotachophoretic Fluorescence in Situ Hybridization of Intact Bacterial Cells. Analytical Chemistry, 2017, 89, 6513-6520.	6.5	20
120	Inexpensive portable capillary electrophoresis instrument for Monitoring Zinc(II) in remote areas. Journal of Chromatography A, 2022, 1668, 462895.	3.7	20
121	Modelling and optimization of the separation of anions in ion chromatography - capillary electrophoresis. Electrophoresis, 2000, 21, 3181-3190.	2.4	19
122	Stainless Steel Pinholes for Fast Fabrication of High-Performance Microchip Electrophoresis Devices by CO ₂ Laser Ablation. Analytical Chemistry, 2013, 85, 10051-10056.	6.5	19
123	Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography. Analytical Chemistry, 2017, 89, 1123-1130.	6.5	19
124	Preconcentration by solvent removal: techniques and applications. Analytical and Bioanalytical Chemistry, 2019, 411, 1715-1727.	3.7	19
125	Sensitive determination of carbohydrates labelled withp-nitroaniline by capillary electrophoresis with photometric detection using a 406 nm light-emitting diode. Electrophoresis, 2006, 27, 4039-4046.	2.4	18
126	Capillary electrophoretic separation of mono- and di-saccharides with dynamic pH junction and implementation in microchips. Analyst, The, 2010, 135, 1970.	3.5	18

#	Article	IF	CITATIONS
127	Droplet Microfluidics for Postcolumn Reactions in Capillary Electrophoresis. Analytical Chemistry, 2014, 86, 11811-11818.	6.5	18
128	Dry film microchips for miniaturised separations. Electrophoresis, 2009, 30, 4219-4224.	2.4	17
129	Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes. Lab on A Chip, 2010, 10, 1869.	6.0	16
130	Analytical isotachophoresis of lactate in human serum using dry film photoresist microfluidic chips compatible with a commercially available field-deployable instrument platform. Analytica Chimica Acta, 2013, 803, 135-142.	5 . 4	16
131	Integrated Microfluidic Devices Fabricated in Poly (Methyl Methacrylate) (PMMA) for On-site Therapeutic Drug Monitoring of Aminoglycosides in Whole Blood. Biosensors, 2019, 9, 19.	4.7	16
132	Analysis of the disaccharides derived from hyaluronic acid and chondroitin sulfate by capillary electrophoresis with sample stacking. Journal of Separation Science, 2005, 28, 2381-2389.	2.5	15
133	Determination of food grade antioxidants using microemulsion electrokinetic chromatography. Electrophoresis, 2010, 31, 2267-2271.	2.4	15
134	Quantitative determination of glucoraphanin in Brassica vegetables by micellar electrokinetic capillary chromatography. Analytica Chimica Acta, 2010, 663, 105-108.	5.4	15
135	Online Comprehensive Two-Dimensional Ion Chromatography × Capillary Electrophoresis. Analytical Chemistry, 2015, 87, 8673-8678.	6. 5	15
136	Modelling of migration behaviour of inorganic anions in ion-exchange capillary electrochromatography. Electrophoresis, 2001, 22, 503-510.	2.4	14
137	Development of a novel fluorescent tag O-2-[aminoethyl]fluorescein for the electrophoretic separation of oligosaccharides. Analytica Chimica Acta, 2010, 662, 206-213.	5.4	14
138	Isotachophoresis on a chip with indirect fluorescence detection as a field deployable system for analysis of carboxylic acids. Electrophoresis, 2012, 33, 3166-3172.	2.4	14
139	Separation of carboxylic acids in human serum by isotachophoresis using a commercial field-deployable analytical platform combined with in-house glass microfluidic chips. Analytica Chimica Acta, 2012, 755, 115-120.	5.4	14
140	Analysis of brazilin and protosappanin <scp>B</scp> in sappan lignum by capillary zone electrophoresis with acid barrage stacking. Electrophoresis, 2013, 34, 3326-3332.	2.4	14
141	Dynamic highâ€resolution computer simulation of isotachophoretic enantiomer separation and zone stability. Electrophoresis, 2014, 35, 625-637.	2.4	14
142	Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide. Talanta, 2015, 143, 191-197.	5 . 5	14
143	\hat{l}^2 -Cyclodextrin-copper (II) complex as chiral selector in capillary electrophoresis for the enantioseparation of \hat{l}^2 -blockers. Journal of Chromatography A, 2019, 1596, 233-240.	3.7	14
144	An electrophoretic ion analyzer for on-site autonomous water monitoring. Journal of Chromatography A, 2021, 1637, 461791.	3.7	14

#	Article	IF	Citations
145	Indirect photometric detection of anions in nonaqueous capillary electrophoresis employing Orange G as probe and a lightâ€emitting diodeâ€based detector. Electrophoresis, 2008, 29, 3032-3037.	2.4	13
146	High intensity light emitting diode array as an alternative exposure source for the fabrication of electrophoretic microfluidic devices. Journal of Chromatography A, 2008, 1213, 3-7.	3.7	13
147	Photolithographic patterning of conducting polyaniline films via flash welding. Synthetic Metals, 2010, 160, 1405-1409.	3.9	13
148	Electrokinetics for sample preparation of biological molecules in biological samples using microfluidic systems. Bioanalysis, 2014, 6, 1961-1974.	1.5	13
149	Scalable 3D printing method for the manufacture of single-material fluidic devices with integrated filter for point of collection colourimetric analysis. Analytica Chimica Acta, 2021, 1151, 238101.	5.4	13
150	Automated liquid-liquid extraction of organic compounds from aqueous samples using a multifunction autosampler syringe. Journal of Chromatography A, 2021, 1642, 462032.	3.7	13
151	Evaluation of Peakmaster for computerâ€aided multivariate optimisation of a CE separation of 17 antipsychotic drugs using minimal experimental data. Electrophoresis, 2009, 30, 839-847.	2.4	12
152	Multiâ€wavelength light emitting diode array as an excitation source for light emitting diodeâ€induced fluorescence detection in capillary electrophoresis. Electrophoresis, 2010, 31, 2589-2595.	2.4	12
153	Dual wavelength excitation fluorescence detector for capillary electrophoresis using a pulsed bi-colour light emitting diode. Analyst, The, 2011, 136, 2234.	3 . 5	12
154	Characterisation of graphene fibres and graphene coated fibres using capacitively coupled contactless conductivity detector. Analyst, The, 2016, 141, 2774-2782.	3. 5	12
155	Pulsed multi-wavelength excitation using fiber-in-capillary light emitting diode induced fluorescence detection in capillary electrophoresis. Talanta, 2010, 83, 521-526.	5 . 5	11
156	Tuneable nanochannel formation for sample-in/answer-out devices. Chemical Communications, 2013, 49, 2816.	4.1	11
157	Electrokinetic Size and Mobility Traps for Onâ€site Therapeutic Drug Monitoring. Angewandte Chemie - International Edition, 2015, 54, 7359-7362.	13.8	11
158	White LEDs as broad spectrum light sources for spectrophotometry: Demonstration in the visible spectrum range in a diodeâ€array spectrophotometric detector. Electrophoresis, 2010, 31, 3737-3744.	2.4	10
159	Capillary electrophoretic system of ribonucleic acid molecules. Journal of Chromatography A, 2012, 1267, 2-9.	3.7	10
160	Analysis of Melamine in Milk Powder and Liquid Milk by Capillary Zone Electrophoresis After Electrokinetic Supercharging. Food Analytical Methods, 2015, 8, 1356-1362.	2.6	10
161	Inâ€Transit Electroextraction of Smallâ€Molecule Pharmaceuticals from Blood. Angewandte Chemie - International Edition, 2019, 58, 3790-3794.	13.8	10
162	Rapid Additive Manufacturing of 3D Geometric Structures via Dual-Wavelength Polymerization. ACS Macro Letters, 2020, 9, 1409-1414.	4.8	10

#	Article	IF	Citations
163	Counter-pressure-assisted ITP with electrokinetic injection under field-amplified conditions for bacterial analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 6995-7002.	3.7	9
164	Membrane assisted and temperature controlled on-line evaporative concentration for microfluidics. Journal of Chromatography A, 2017, 1486, 110-116.	3.7	9
165	Time-Resolved Pharmacological Studies using Automated, On-line Monitoring of Five Parallel Suspension Cultures. Scientific Reports, 2017, 7, 10337.	3.3	9
166	Principles around Accurate Blood Volume Collection Using Capillary Action. Langmuir, 2017, 33, 14220-14225.	3.5	9
167	Optimization of smartphone-based on-site-capable uranium analysis in water using a 3D printed microdevice. Analytical and Bioanalytical Chemistry, 2021, 413, 3243-3251.	3.7	9
168	Analysis of aromatic acids by nonaqueous capillary electrophoresis with ionicâ€liquid electrolytes. Electrophoresis, 2014, 35, 3310-3316.	2.4	8
169	Stacking in a continuous sample flow interface in capillary electrophoresis. Journal of Chromatography A, 2015, 1408, 236-242.	3.7	8
170	3D Printed Micrometer-Scale Polymer Mounts for Single Crystal Analysis. Analytical Chemistry, 2017, 89, 4405-4408.	6.5	8
171	In Silico Screening of Two-Dimensional Separation Selectivity for Ion Chromatography \tilde{A} — Capillary Electrophoresis Separation of Low-Molecular-Mass Organic Acids. Analytical Chemistry, 2017, 89, 8808-8815.	6.5	8
172	Porphyrin-based colorimetric sensing of perfluorooctanoic acid as proof of concept for perfluoroalkyl substance detection. Chemical Communications, 2021, 57, 11649-11652.	4.1	8
173	Stalk cell polar ion transport provide for bladderâ€based salinity tolerance in <i>Chenopodium quinoa</i> . New Phytologist, 2022, 235, 1822-1835.	7.3	8
174	Micellar electrokinetic chromatography of organic and peroxide-based explosives. Analytica Chimica Acta, 2015, 876, 91-97.	5.4	7
175	An Open Microfluidic Chip for Continuous Sampling of Solute from a Turbulent Particle Suspension. Angewandte Chemie - International Edition, 2021, 60, 2654-2657.	13.8	7
176	Lightâ€emitting diodeâ€compatible probes for indirect detection of anions in CE. Electrophoresis, 2007, 28, 3453-3460.	2.4	6
177	Electric field gradient focusing using a variable width polyaniline electrode. Electrophoresis, 2012, 33, 3254-3258.	2.4	6
178	Miniaturized 3D printed solid-phase extraction cartridges with integrated porous frits. Analytica Chimica Acta, 2022, 1208, 339790.	5.4	6
179	Fast CE for combinatorial catalysis. Electrophoresis, 2008, 29, 491-498.	2.4	5
180	Porous layer open tubular monolith capillary column: switching-off the reaction kinetics as the governing factor in their preparation by using an immiscible liquid-controlled polymerization. RSC Advances, 2013, 3, 24927.	3.6	5

#	Article	IF	Citations
181	Direct electrokinetic injection of inorganic cations from whole fruits and vegetables for capillary electrophoresis analysis. Journal of Chromatography A, 2016, 1428, 346-351.	3.7	5
182	On-line solvent exchange system: Automation from extraction to analysis. Analytica Chimica Acta, 2019, 1047, 231-237.	5.4	5
183	Hyphenated sample preparation-electrospray and nano-electrospray ionization mass spectrometry for biofluid analysis. Journal of Chromatography A, 2021, 1646, 462086.	3.7	5
184	Current applications of colourimetric microfluidic devices (smart phone based) for soil nutrient determination., 2021,, 103-128.		5
185	Biphasic Magnetic Levitation to Detect Organic Pollutants on Microplastics. Analytical Chemistry, 2022, 94, 9033-9039.	6.5	5
186	Toward optimization of macroporous silica gels for application to capillary or microchip-based CEC and LC. Journal of Non-Crystalline Solids, 2004, 350, 391-396.	3.1	4
187	Capillary electrophoresis ribosomal RNA single-stranded conformation polymorphism: a new approach for characterization of low-diversity microbial communities. Analytical and Bioanalytical Chemistry, 2012, 404, 1897-1906.	3.7	4
188	Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization. Electrophoresis, 2013, 34, 3189-3197.	2.4	4
189	Evaluation of potential cationic probes for the detection of proline and betaine. Electrophoresis, 2014, 35, 3379-3386.	2.4	4
190	Microfluidic Device for Studying Traumatic Brain Injury. Neuromethods, 2017, , 145-156.	0.3	4
191	In-Syringe Electrokinetic Ampholytes Focusing Coupled with Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 8259-8266.	6.5	4
192	Inâ€Syringe Electrokinetic Protein Removal from Biological Samples prior to Electrospray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2020, 59, 23162-23168.	13.8	4
193	LED controlled flow photolysis for concentration gradients in microfluidic systems. Chemical Communications, 2010, 46, 3342.	4.1	2
194	Cheers: cracking open the bottleneck of extraction in bioanalysis. Bioanalysis, 2015, 7, 3053-3055.	1.5	2
195	The influence of electrolyte concentration on nanofractures fabricated in a 3Dâ€printed microfluidic device by controlled dielectric breakdown. Electrophoresis, 2020, 41, 2007-2014.	2.4	2
196	Isotachophoresis for rapid transformation of <i>Escherichia coli</i> . Electrophoresis, 2022, 43, 543-547.	2.4	2
197	Approaches to Enhancing the Sensitivity of Carbohydrate Separations in Capillary Electrophoresis. Methods in Molecular Biology, 2013, 984, 27-43.	0.9	1
198	An Open Microfluidic Chip for Continuous Sampling of Solute from a Turbulent Particle Suspension. Angewandte Chemie, 2021, 133, 2686-2689.	2.0	1

#	Article	IF	CITATIONS
199	Fluorophores and Chromophores for the Separation of Carbohydrates by Capillary Electrophoresis. , $2011, , 23-51.$		1
200	Monolithic Sol-gel Microchip Device for Efficient Isolation of Nucleic Acid From Clinical Samples., 2002,, 198-200.		1
201	Continuous monitoring of <scp>EDTA</scp> extractable iron from mineral slurries using a microfluidic chip. Canadian Journal of Chemical Engineering, 2023, 101, 944-952.	1.7	1
202	Erratum to "lon chromatography on-chip― Journal of Chromatography A, 2002, 943, 311.	3.7	0
203	Techniques for the separation of ionic and ionogenic species. Foreword. Journal of Chromatography A, 2008, 1213, 1-2.	3.7	O
204	Concentration and Sensitivity Enhancement. Electrophoresis, 2016, 37, 1121-1121.	2.4	0
205	Editors' Tribute to Professor Hanfa Zou. Journal of Chromatography A, 2017, 1486, 1.	3.7	O
206	7th Advances in Microfluidics & Nanofluidics (AMN)/9th International Symposium on Microchemistry and Microsystems (ISMM)/5th Asia-Pacific Chemical and Biological Microfluidic Conference (APCBM)/8th Australia New Zealand Nano-Microfluidics Symposium (ANZNMF) (Hobart, Australia, June) Tj ETQqC) 0 ³ 0 ⁴ rgBT	/Overlock 10
207	Separation of Small-Mass Ions. , 2018, , 353-372.		0
208	Inâ€Transit Electroextraction of Smallâ€Molecule Pharmaceuticals from Blood. Angewandte Chemie, 2019, 131, 3830-3834.	2.0	0
209	Inâ€Syringe Electrokinetic Protein Removal from Biological Samples prior to Electrospray Ionization Mass Spectrometry. Angewandte Chemie, 2020, 132, 23362-23368.	2.0	O