Paras N Prasad

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2828588/paras-n-prasad-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

188 43,063 103 571 h-index g-index citations papers 46,558 581 7.6 7.52 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
571	Mitochondrial Dysfunction: A Prelude to Neuropathogenesis of SARS-CoV-2 <i>ACS Chemical Neuroscience</i> , 2022 ,	5.7	3
570	Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. <i>Coordination Chemistry Reviews</i> , 2022 , 460, 214486	23.2	2
569	High contrast 3-D optical bioimaging using molecular and nanoprobes optically responsive to IR light. <i>Physics Reports</i> , 2022 , 962, 1-107	27.7	O
568	Small Molecule Based EGFR Targeting of Biodegradable Nanoparticles Containing Temozolomide and Cy5 Dye for Greatly Enhanced Image-Guided Glioblastoma Therapy <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2021 , 102513	6	2
567	Fluorescence lifetime imaging for studying DNA compaction and gene activities. <i>Light: Science and Applications</i> , 2021 , 10, 224	16.7	3
566	Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. <i>Chemical Reviews</i> , 2021 ,	68.1	23
565	Lifetime of the H Electronic State in Tm-Doped Upconverting Nanoparticles for NIR Nanothermometry. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 13132-13136	3.4	O
564	Photoechogenic Inflatable Nanohybrids for Upconversion-Mediated Sonotheranostics. <i>ACS Nano</i> , 2021 ,	16.7	3
563	A Regioselectively Oxidized 2D Bi/BiOx Lateral Nano-Heterostructure for Hypoxic Photodynamic Therapy. <i>Advanced Materials</i> , 2021 , e2102562	24	16
562	A Single-Organelle Optical Omics Platform for Cell Science and Biomarker Discovery. <i>Analytical Chemistry</i> , 2021 , 93, 8281-8290	7.8	3
561	Repression of Interlayer Recombination by Graphene Generates a Sensitive Nanostructured 2D vdW Heterostructure Based Photodetector. <i>Advanced Science</i> , 2021 , 8, e2100503	13.6	13
560	Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics. <i>Accounts of Chemical Research</i> , 2021 , 54, 697-706	24.3	24
559	Hybrid Curdlan Poly([]-Glutamic Acid) Nanoassembly for Immune Modulation in Macrophage. <i>Macromolecular Bioscience</i> , 2021 , 21, e2000358	5.5	O
558	Excretable, ultrasmall hexagonal NaGdF:Yb50% nanoparticles for bimodal imaging and radiosensitization. <i>Cancer Nanotechnology</i> , 2021 , 12, 4	7.9	1
557	Water-Dispersible CsPbBr Perovskite Nanocrystals with Ultra-Stability and its Application in Electrochemical CO Reduction. <i>Nano-Micro Letters</i> , 2021 , 13, 172	19.5	3
556	Hot-band absorption of indocyanine green for advanced anti-stokes fluorescence bioimaging. <i>Light: Science and Applications</i> , 2021 , 10, 182	16.7	0
555	Highly Efficient NaGdF:Ce/Tb Nanoscintillator with Reduced Afterglow and Light Scattering for High-Resolution X-ray Imaging. <i>ACS Applied Materials & Endows amp; Interfaces</i> , 2021 , 13, 44596-44603	9.5	8

(2020-2021)

554	Blast-induced injury responsive relative gene expression of traumatic brain injury biomarkers in human brain microvascular endothelial cells. <i>Brain Research</i> , 2021 , 1770, 147642	3.7	O	
553	IDH1 mutations induce organelle defects via dysregulated phospholipids. <i>Nature Communications</i> , 2021 , 12, 614	17.4	19	
552	Dye-Sensitized Lanthanide-Doped Upconversion Nanoparticles for Water Detection in Organic Solvents. <i>ACS Applied Nano Materials</i> , 2021 , 4, 14069-14076	5.6	О	
551	Nonlinear Optical Interactions and Relaxation in 2D Layered Transition Metal Dichalcogenides Probed by Optical and Photoacoustic Z-Scan Methods. <i>ACS Photonics</i> , 2020 , 7, 3440-3447	6.3	11	
550	Computational design of two-photon active organic molecules for infrared responsive materials. Journal of Materials Chemistry C, 2020 , 8, 9867-9873	7.1	1	
549	Galvanic replacement synthesis of multi-branched gold nanocrystals for photothermal cancer therapy. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 5491-5499	7.3	9	
548	High resolution mapping of subcellular refractive index by Fluorescence Lifetime Imaging: a next frontier in quantitative cell science?. <i>Methods and Applications in Fluorescence</i> , 2020 , 8, 032001	3.1	5	
547	A Dual-Functioning 5PPPP-NS1shRNA that Activates a RIG-I Antiviral Pathway and Suppresses Influenza NS1. <i>Molecular Therapy - Nucleic Acids</i> , 2020 , 19, 1413-1422	10.7	0	
546	A Multimodal Theranostic Nanoformulation That Dramatically Enhances Docetaxel Efficacy Against Castration Resistant Prostate Cancer. <i>Journal of Pharmaceutical Sciences</i> , 2020 , 109, 2874-2883	3.9	5	
545	Interlayer-Sensitized Linear and Nonlinear Photoluminescence of Quasi-2D Hybrid Perovskites Using Aggregation-Induced Enhanced Emission Active Organic Cation Layers. <i>Advanced Functional Materials</i> , 2020 , 30, 1909375	15.6	8	
544	Laser ablation for pharmaceutical nanoformulations: Multi-drug nanoencapsulation and theranostics for HIV. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2020 , 25, 102172	6	7	
543	Elucidating the Role of the Organic Cation in Tuning the Optical Response of Two-Dimensional OrganicIhorganic Halide Perovskites by Computational Investigation. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 3224-3232	3.8	3	
542	Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. <i>Physics Reports</i> , 2020 , 848, 1-58	27.7	321	
54 ¹	Bacterial Synthesis of Ternary CdSAg Quantum Dots through Cation Exchange: Tuning the Composition and Properties of Biological Nanoparticles for Bioimaging and Photovoltaic Applications. <i>Microorganisms</i> , 2020 , 8,	4.9	19	
540	Quasi-triply-degenerate states and zero refractive index in two-dimensional all-dielectric photonic crystals. <i>Optics Express</i> , 2020 , 28, 5548-5554	3.3	3	
539	Dynamically controlling local field enhancement at an epsilon-near-zero/dielectric interface via nonlinearities of an epsilon-near-zero medium. <i>Nanophotonics</i> , 2020 , 9, 4831-4837	6.3	4	
538	Curcumin-Pluronic Nanoparticles: A Theranostic Nanoformulation for Alzheimerß Disease. <i>Critical Reviews in Biomedical Engineering</i> , 2020 , 48, 153-168	1.1	5	
537	Photoacoustic and Magnetic Resonance Imaging of Hybrid Manganese Dioxide-Coated Ultra-small NaGdF Nanoparticles for Spatiotemporal Modulation of Hypoxia in Head and Neck Cancer. <i>Cancers</i> , 2020 , 12,	6.6	4	

536	Two-Photon Excitation Enhanced High-Efficiency and Phase-Conjugate Stimulated Mie Scattering of Perovskite Nanocrystals Suspended in n-Hexane. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 25944-2	5 95 0	1
535	Laser-Ablative Synthesis of Stable Aqueous Solutions of Elemental Bismuth Nanoparticles for Multimodal Theranostic Applications. <i>Nanomaterials</i> , 2020 , 10,	5.4	10
534	A dual mode nanophotonics concept for in situ activation of brain immune cells using a photoswitchable yolk-shell upconversion nanoformulation. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2020 , 29, 102279	6	2
533	In Situ Ultraviolet Polymerization Using Upconversion Nanoparticles: Nanocomposite Structures Patterned by Near Infrared Light. <i>Nanomaterials</i> , 2020 , 10,	5.4	2
532	Perfluoropolyether Nanoemulsion Encapsulating Chlorin e6 for Sonodynamic and Photodynamic Therapy of Hypoxic Tumor. <i>Nanomaterials</i> , 2020 , 10,	5.4	8
531	Organic NIR-II Photoacoustic Agent Utilizing Combined Two-Photon and Excited State Absorption at 1064 nm. <i>ACS Photonics</i> , 2020 , 7, 3161-3165	6.3	10
530	Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. <i>Light: Science and Applications</i> , 2020 , 9, 161	16.7	68
529	Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. <i>ACS Nano</i> , 2020 , 14, 12781-127	956.7	20
528	Laser-Processed Nanosilicon: A Multifunctional Nanomaterial for Energy and Healthcare. <i>ACS Nano</i> , 2019 , 13, 9841-9867	16.7	60
527	Manipulating Nonradiative Decay Channel by Intermolecular Charge Transfer for Exceptionally Improved Photothermal Conversion. <i>ACS Nano</i> , 2019 , 13, 12006-12014	16.7	46
526	Modulation of Surface Energy Transfer Cascade for Reversible Photoluminescence pH Sensing. <i>Chemistry of Materials</i> , 2019 , 31, 8121-8128	9.6	13
525	Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging. <i>Nature Communications</i> , 2019 , 10, 455	17.4	21
524	Stimuli-Responsive Reversible Switching of Intersystem Crossing in Pure Organic Material for Smart Photodynamic Therapy. <i>Angewandte Chemie</i> , 2019 , 131, 11222-11228	3.6	8
523	Stimuli-Responsive Reversible Switching of Intersystem Crossing in Pure Organic Material for Smart Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11105-11111	16.4	45
522	Doubly resonant sum frequency spectroscopy of mixed photochromic isomers on surfaces reveals conformation-specific vibronic effects. <i>Journal of Chemical Physics</i> , 2019 , 150, 114704	3.9	13
521	Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. <i>Nano Today</i> , 2019 , 25, 135-155	17.9	189
520	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. <i>Physics Reports</i> , 2019 , 795, 1-51	27.7	262
519	Laser-Ablative Synthesis of Isotope-Enriched Samarium Oxide Nanoparticles for Nuclear Nanomedicine. <i>Nanomaterials</i> , 2019 , 10,	5.4	7

(2018-2019)

518	Coherent Raman spectroscopic imaging to characterize microglia activation pathway. <i>Journal of Biophotonics</i> , 2019 , 12, e201800133	3.1	4
517	Toward Single-Organelle Lipidomics in Live Cells. <i>Analytical Chemistry</i> , 2019 , 91, 11380-11387	7.8	11
516	Cellular transformations in near-infrared light-induced apoptosis in cancer cells revealed by label-free CARS imaging. <i>Journal of Biophotonics</i> , 2019 , 12, e201900179	3.1	5
515	Neurovascular Coupling in the Dentate Gyrus Regulates Adult Hippocampal Neurogenesis. <i>Neuron</i> , 2019 , 103, 878-890.e3	13.9	31
514	Mechanism of stimulated Mie scattering: Light-induced redistribution of self-assembled nanospheres of two-photon absorbing chromophore. <i>Journal of Chemical Physics</i> , 2019 , 151, 104202	3.9	2
513	Boron-Nanoparticle-Loaded Folic-Acid-Functionalized Liposomes to Achieve Optimum Boron Concentration for Boron Neutron Capture Therapy of Cancer. <i>Journal of Biomedical Nanotechnology</i> , 2019 , 15, 1714-1723	4	15
512	Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime. <i>Photonics Research</i> , 2019 , 7, 699	6	12
511	In vitro Pharmacokinetic Cell Culture System that Simulates Physiologic Drug and Nanoparticle Exposure to Macrophages. <i>Pharmaceutical Research</i> , 2019 , 36, 44	4.5	3
510	Near-Infrared Irradiation Affects Lipid Metabolism in Neuronal Cells, Inducing Lipid Droplets Formation. <i>ACS Chemical Neuroscience</i> , 2019 , 10, 1517-1523	5.7	2
509	Self-cleaning membranes for water purification by co-deposition of photo-mobile 4,4?-azodianiline and bio-adhesive polydopamine. <i>Journal of Membrane Science</i> , 2018 , 554, 164-174	9.6	24
508	ICG-Sensitized NaYF4:Er Nanostructure for Theranostics. Advanced Optical Materials, 2018, 6, 1701142	8.1	34
507	Interaction of Structured Light with a Chiral Plasmonic Metasurface: Giant Enhancement of Chiro-Optic Response. <i>ACS Photonics</i> , 2018 , 5, 734-740	6.3	20
506	Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimerß disease?. <i>Journal of Drug Targeting</i> , 2018 , 26, 182-193	5.4	34
505	TiO -coated fluoride nanoparticles for dental multimodal optical imaging. <i>Journal of Biophotonics</i> , 2018 , 11, e201700029	3.1	4
504	Gold-Small Interfering RNA as Optically Responsive Nanostructures for Cancer Theranostics. Journal of Biomedical Nanotechnology, 2018 , 14, 809-828	4	9
503	Polymer-assisted room-temperature synthesis of highly luminescent perovskite nanocrystals with superior water resistance for WLED. <i>Materials Letters</i> , 2018 , 232, 138-141	3.3	10
502	Heteroatom-Containing Organic Molecule for Two-Photon Fluorescence Lifetime Imaging and Photodynamic Therapy. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 20945-20951	3.8	6
501	Optical Control of Biomimetic Nanoparticle Catalysts Based upon the Metal Component. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 28055-28064	3.8	5

500	Multilevel Nanoarchitecture Exhibiting Biosensing for Cancer Diagnostics by Dual-Modal Switching of Optical and Magnetic Resonance Signals <i>ACS Applied Bio Materials</i> , 2018 , 1, 1505-1511	4.1	10
499	Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2018 , 10, 33640-33651	9.5	11
498	Organic Solvent and Surfactant Free Fluorescent Organic Nanoparticles by Laser Ablation of Aggregation-Induced Enhanced Emission Dyes. <i>Advanced Optical Materials</i> , 2018 , 6, 1800164	8.1	12
497	Dramatic Enhancement of Quantum Cutting in Lanthanide-Doped Nanocrystals Photosensitized with an Aggregation-Induced Enhanced Emission Dye. <i>Nano Letters</i> , 2018 , 18, 4922-4926	11.5	32
496	A core-multiple shell nanostructure enabling concurrent upconversion and quantum cutting for photon management. <i>Nanoscale</i> , 2017 , 9, 1934-1941	7.7	24
495	Subcellular Optogenetics Enacted by Targeted Nanotransformers of Near-Infrared Light. <i>ACS Photonics</i> , 2017 , 4, 806-814	6.3	44
494	Surfactant-stripped naphthalocyanines for multimodal tumor theranostics with upconversion guidance cream. <i>Nanoscale</i> , 2017 , 9, 3391-3398	7.7	33
493	. IEEE Journal of Selected Topics in Quantum Electronics, 2017 , 23, 1-6	3.8	2
492	Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (FeO) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities. <i>ACS Nano</i> , 2017 , 11, 6370-6381	16.7	80
491	Au-CuSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. Journal of Materials Chemistry B, 2017 , 5, 4934-4942	7-3	28
490	Nd-Sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure. <i>Nanoscale</i> , 2017 , 9, 10633-10638	7.7	42
489	Lipid quantification by Raman microspectroscopy as a potential biomarker in prostate cancer. <i>Cancer Letters</i> , 2017 , 397, 52-60	9.9	31
488	Kuramite Cu3SnS4 and Mohite Cu2SnS3 Nanoplatelet Synthesis Using Covellite CuS Templates with Sn(II) and Sn(IV) Sources. <i>Chemistry of Materials</i> , 2017 , 29, 3555-3562	9.6	43
487	Nonlinear Photoacoustic Imaging by Multiphoton Upconversion and Energy Transfer. <i>ACS Photonics</i> , 2017 , 4, 2699-2705	6.3	17
486	Dopamine-mediated photothermal theranostics combined with up-conversion platform under near infrared light. <i>Scientific Reports</i> , 2017 , 7, 13562	4.9	29
485	Macromolecular Profiling of Organelles in Normal Diploid and Cancer Cells. <i>Analytical Chemistry</i> , 2017 , 89, 10985-10990	7.8	10
484	Molecular profiling of single organelles for quantitative analysis of cellular heterogeneity. <i>Scientific Reports</i> , 2017 , 7, 6512	4.9	19
483	Interplay between structure and chiral properties of polyfluorene derivatives. <i>Polymer</i> , 2017 , 132, 98-1	0 <u>5</u> .9	7

(2016-2017)

482	Stable ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for dual-modal upconversion and photoacoustic imaging together with photothermal therapy. <i>Scientific Reports</i> , 2017 , 7, 15753	4.9	43
481	Halo-substituted azobenzenes adsorbed at Ag(111) and Au(111) interfaces: Structures and optical properties. <i>Physical Review B</i> , 2017 , 95,	3.3	2
480	Chiral polymer photonics. <i>Optical Materials Express</i> , 2017 , 7, 2432	2.6	8
479	Ramanomics: New Omics Disciplines Using Micro Raman Spectrometry with Biomolecular Component Analysis for Molecular Profiling of Biological Structures. <i>Biosensors</i> , 2017 , 7,	5.9	17
478	Efficient Broadband Upconversion of Near-Infrared Light in Dye-Sensitized Core/Shell Nanocrystals. <i>Advanced Optical Materials</i> , 2016 , 4, 1760-1766	8.1	85
477	Manipulating Magneto-Optic Properties of a Chiral Polymer by Doping with Stable Organic Biradicals. <i>Nano Letters</i> , 2016 , 16, 5451-5	11.5	25
476	In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space. <i>Biomaterials</i> , 2016 , 104, 78-86	15.6	21
475	Molecular nonlinear optics: recent advances and applications. <i>Advances in Optics and Photonics</i> , 2016 , 8, 328	16.7	69
474	Alleviating Luminescence Concentration Quenching in Upconversion Nanoparticles through Organic Dye Sensitization. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15130-15133	16.4	111
473	Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. <i>Chemical Reviews</i> , 2016 , 116, 2826-85	68.1	962
472	Emerging Nanomedicine Approaches to Targeting HIV-1 and Antiretroviral Therapy. <i>Future Virology</i> , 2016 , 11, 101-104	2.4	4
471	Plasmon-enhanced two-photon-induced isomerization for highly-localized light-based actuation of inorganic/organic interfaces. <i>Nanoscale</i> , 2016 , 8, 4194-202	7.7	14
470	New fluorene-based chiral copolymers with unusually high optical activity in pristine and annealed thin films. <i>RSC Advances</i> , 2016 , 6, 23879-23886	3.7	12
469	Near-IR responsive nanostructures for nanobiophotonics: emerging impacts on nanomedicine. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2016 , 12, 771-788	6	35
468	Optical Actuation of Inorganic/Organic Interfaces: Comparing Peptide-Azobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles. <i>ACS Applied Materials & Discourse (Comparing Peptide Agobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles)</i>)-8 6	22
467	Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids. <i>Annalen Der Physik</i> , 2016 , 528, 852-864	2.6	10
466	Manganese-doped near-infrared emitting nanocrystals for in vivo biomedical imaging. <i>Optics Express</i> , 2016 , 24, 17553-61	3.3	8
465	Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16192-16195	16.4	257

464	Resonance Raman Probes for Organelle-Specific Labeling in Live Cells. Scientific Reports, 2016, 6, 28483	3 4.9	25
463	Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 30845-30856	3.6	7
462	Twisted Thiophene-Based Chromophores with Enhanced Intramolecular Charge Transfer for Cooperative Amplification of Third-Order Optical Nonlinearity. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6975-84	16.4	81
461	Multifunctional Photonics Nanoparticles for Crossing the Blood-Brain Barrier and Effecting Optically Trackable Brain Theranostics. <i>Advanced Functional Materials</i> , 2016 , 26, 7057-7066	15.6	44
460	New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. <i>Chemical Reviews</i> , 2016 , 116, 12234-12327	68.1	369
459	Remote Optically Controlled Modulation of Catalytic Properties of Nanoparticles through Reconfiguration of the Inorganic/Organic Interface. <i>ACS Nano</i> , 2016 , 10, 9470-9477	16.7	43
458	Metaphotonics: An emerging field with opportunities and challenges. <i>Physics Reports</i> , 2015 , 594, 1-60	27.7	52
457	Triggering nanoparticle surface ligand rearrangement via external stimuli: light-based actuation of biointerfaces. <i>Nanoscale</i> , 2015 , 7, 13638-45	7.7	24
456	Room-Temperature Synthesis of Covellite Nanoplatelets with Broadly Tunable Localized Surface Plasmon Resonance. <i>Chemistry of Materials</i> , 2015 , 27, 2584-2590	9.6	73
455	Cooperative coupling of cyanine and tictoid twisted Esystems to amplify organic chromophore cubic nonlinearities. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4622-5	16.4	47
454	Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal. <i>Nano Letters</i> , 2015 , 15, 7400-7	11.5	279
453	Low-bandgap biophotonic nanoblend: a platform for systemic disease targeting and functional imaging. <i>Biomaterials</i> , 2015 , 39, 225-33	15.6	16
452	Light upconverting core-shell nanostructures: nanophotonic control for emerging applications. <i>Chemical Society Reviews</i> , 2015 , 44, 1680-713	58.5	417
451	Lanthanide-Doped Fluoride Core/Multishell Nanoparticles for Broadband Upconversion of Infrared Light. <i>Advanced Optical Materials</i> , 2015 , 3, 575-582	8.1	47
450	A degradable brush polymerdrug conjugate for pH-responsive release of doxorubicin. <i>Polymer Chemistry</i> , 2015 , 6, 953-961	4.9	73
449	Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. <i>Pain</i> , 2015 , 156, 1320-1333	8	36
448	Single Cell Assay for Molecular Diagnostics and Medicine: Monitoring Intracellular Concentrations of Macromolecules by Two-photon Fluorescence Lifetime Imaging. <i>Theranostics</i> , 2015 , 5, 919-30	12.1	34
447	Well-defined diblock brush polymer-drug conjugates for sustained delivery of paclitaxel. Biomaterials Science, 2015, 3, 1078-84	7.4	36

(2014-2015)

446	Fluctuations and synchrony of RNA synthesis in nucleoli. <i>Integrative Biology (United Kingdom)</i> , 2015 , 7, 681-92	3.7	16
445	Organelle specific imaging in live cells and immuno-labeling using resonance Raman probe. <i>Biomaterials</i> , 2015 , 53, 25-31	15.6	29
444	Tuning upconversion through a sensitizer/activator-isolated NaYFIŁore/shell structure. <i>Nanoscale</i> , 2015 , 7, 3976-84	7.7	45
443	Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. <i>Advanced Materials</i> , 2015 , 27, 1785-90	24	163
442	Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2014 , 10, 831-8	6	58
441	Synthesis of pH-responsive chitosan nanocapsules for the controlled delivery of doxorubicin. <i>Langmuir</i> , 2014 , 30, 4111-9	4	42
440	Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug-gene co-delivery to cancer cells. <i>Nanoscale</i> , 2014 , 6, 1567-72	7.7	89
439	Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. <i>Biomacromolecules</i> , 2014 , 15, 524-32	6.9	105
438	Enhanced upconversion emission in colloidal (NaYF4:Er(3+))/NaYF4 core/shell nanoparticles excited at 1523 nm. <i>Optics Letters</i> , 2014 , 39, 1386-9	3	51
437	Simultaneous multiple wavelength upconversion in a core-shell nanoparticle for enhanced near infrared light harvesting in a dye-sensitized solar cell. <i>ACS Applied Materials & Discrete Sensitized</i> , 18018-25	9.5	65
436	Changes in biomolecular profile in a single nucleolus during cell fixation. <i>Analytical Chemistry</i> , 2014 , 86, 10909-16	7.8	25
435	Comparative Study of Materials-Binding Peptide Interactions with Gold and Silver Surfaces and Nanostructures: A Thermodynamic Basis for Biological Selectivity of Inorganic Materials. <i>Chemistry of Materials</i> , 2014 , 26, 4960-4969	9.6	96
434	Hydrogels: Pd-Porphyrin-Cross-Linked Implantable Hydrogels with Oxygen-Responsive Phosphorescence (Adv. Healthcare Mater. 6/2014). <i>Advanced Healthcare Materials</i> , 2014 , 3, 890-890	10.1	
433	Intense ultraviolet upconversion emission from water-dispersed colloidal YF3:Yb3+/Tm3+ rhombic nanodisks. <i>Nanoscale</i> , 2014 , 6, 753-7	7.7	49
432	Size-tunable and monodisperse Tml+/Gdl+-doped hexagonal NaYbFlhanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 13884-93	9.5	111
431	Pd-porphyrin-cross-linked implantable hydrogels with oxygen-responsive phosphorescence. <i>Advanced Healthcare Materials</i> , 2014 , 3, 891-6	10.1	41
430	Plasmonic Semiconductor Nanocrystals as Chemical Sensors: Pb2+ Quantitation via Aggregation-Induced Plasmon Resonance Shift. <i>Plasmonics</i> , 2014 , 9, 893-898	2.4	15
429	Manipulating nanoscale interactions in a polymer nanocomposite for chiral control of linear and nonlinear optical functions. <i>Advanced Materials</i> , 2014 , 26, 1607-11	24	12

428	Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties. <i>Nanoscale</i> , 2014 , 6, 3165-72	7.7	91
427	Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. <i>Chemical Reviews</i> , 2014 , 114, 5161-214	68.1	1742
426	Enhanced Upconversion Luminescence in Yb/Tm-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration. <i>Nanomaterials</i> , 2014 , 4, 55-68	5.4	67
425	Direct three-photon excitation of upconversion random laser emission in a weakly scattering organic colloidal system. <i>Optics Express</i> , 2014 , 22, 14305-10	3.3	18
424	Ormosil nanoparticles as a sustained-release drug delivery vehicle. <i>RSC Advances</i> , 2014 , 4, 53498-53504	3.7	24
423	Nanochemistry and nanomaterials for photovoltaics. <i>Chemical Society Reviews</i> , 2013 , 42, 8304-38	58.5	225
422	Polarimetric z-Scan Study of Nonlinear Chirooptic Properties of Chiral Polyfluorene. <i>Advanced Optical Materials</i> , 2013 , 1, 763-767	8.1	10
421	Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. <i>ACS Nano</i> , 2013 , 7, 7303-10	16.7	167
420	Design and Synthesis of Polymers for Chiral Photonics. <i>Macromolecules</i> , 2013 , 46, 7158-7165	5.5	36
419	Fluorogenic, two-photon-triggered photoclick chemistry in live mammalian cells. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16766-9	16.4	126
418	Coupled plasmons induce broadband circular dichroism in patternable films of silver nanoparticles with chiral ligands. <i>Nanoscale</i> , 2013 , 5, 10550-5	7.7	14
4 ¹ 7	Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2013 , 9, 1192-202	6	24
416	On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity. <i>Nano Letters</i> , 2013 , 13, 451-6	11.5	125
415	Well-defined degradable brush polymer-drug conjugates for sustained delivery of Paclitaxel. <i>Molecular Pharmaceutics</i> , 2013 , 10, 867-74	5.6	94
414	Nanotoxicity assessment of quantum dots: from cellular to primate studies. <i>Chemical Society Reviews</i> , 2013 , 42, 1236-50	58.5	359
413	Nucleolar molecular signature of pluripotent stem cells. <i>Analytical Chemistry</i> , 2013 , 85, 3545-52	7.8	11
412	Cu2-x Se nanocrystals with localized surface plasmon resonance as sensitive contrast agents for in vivo photoacoustic imaging: demonstration of sentinel lymph node mapping. <i>Advanced Healthcare Materials</i> , 2013 , 2, 952-7	10.1	83
411	Tunable near infrared to ultraviolet upconversion luminescence enhancement in (ENaYF4 :Yb,Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. <i>Small</i> , 2013 , 9, 3213-7	11	36

410	Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles. <i>Accounts of Chemical Research</i> , 2013 , 46, 1474-86	24.3	198
409	Functionalized Plasmonic Anisotropic Nanocrystals for Multimodal Imaging of Cancer Cells. <i>Plasmonics</i> , 2013 , 8, 313-318	2.4	5
408	Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions. Journal of Chemical Physics, 2013 , 138, 024202	3.9	20
407	Regioselective synthesis and photophysical and electrochemical studies of 20-substituted cyanine dye-purpurinimide conjugates: incorporation of Ni(II) into the conjugate enhances its tumor-uptake and fluorescence-imaging ability. <i>Chemistry - A European Journal</i> , 2013 , 19, 6670-84	4.8	15
406	Plasmonic gold and luminescent silicon nanoplatforms for multimode imaging of cancer cells. <i>Integrative Biology (United Kingdom)</i> , 2013 , 5, 144-50	3.7	15
405	Biomolecular recognition principles for bionanocombinatorics: an integrated approach to elucidate enthalpic and entropic factors. <i>ACS Nano</i> , 2013 , 7, 9632-46	16.7	121
404	Au-Cu(2-x)Se heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. <i>Nano Letters</i> , 2013 , 13, 4333-9	11.5	154
403	A Framework for Identifying Affinity Classes of Inorganic Materials Binding Peptide Sequences 2013 ,		1
402	Upconversion: Tunable Near Infrared to Ultraviolet Upconversion Luminescence Enhancement in (ENaYF4:Yb,Tm)/CaF2 Core/Shell Nanoparticles for In situ Real-time Recorded Biocompatible Photoactivation (Small 19/2013). <i>Small</i> , 2013 , 9, 3212-3212	11	172
401	Facile synthesis and potential bioimaging applications of hybrid upconverting and plasmonic NaGdF4: Yb3+, Er3+/silica/gold nanoparticles. <i>Theranostics</i> , 2013 , 3, 275-81	12.1	61
400	Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia. <i>Theranostics</i> , 2013 , 3, 719-28	12.1	13
399	Enhanced performance of organic photovoltaic cells fabricated with a methyl thiophene-3-carboxylate-containing alternating conjugated copolymer. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 146-51	4.8	15
398	Core/shell NaGdF4:Nd(3+)/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. <i>ACS Nano</i> , 2012 , 6, 2969-77	16.7	350
397	Bioconjugated pluronic triblock-copolymer micelle-encapsulated quantum dots for targeted imaging of cancer: in vitro and in vivo studies. <i>Theranostics</i> , 2012 , 2, 705-13	12.1	60
396	Fluorescence lifetime of fluorescent proteins as an intracellular environment probe sensing the cell cycle progression. <i>ACS Chemical Biology</i> , 2012 , 7, 1385-92	4.9	39
395	Gold nanorod-sphingosine kinase siRNA nanocomplexes: a novel therapeutic tool for potent radiosensitization of head and neck cancer. <i>Integrative Biology (United Kingdom)</i> , 2012 , 4, 132-41	3.7	31
394	Electronic structure and optical properties of an alternated fluorene-benzothiadiazole copolymer: interplay between experimental and theoretical data. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 3681-9	o č .8	22
393	Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications. <i>Nanoscale</i> , 2012 , 4, 5483-9	7.7	70

392	Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16709		94
391	Quantum rods as nanocarriers of gene therapy. <i>Drug Delivery</i> , 2012 , 19, 220-31	7	8
390	Polymer solar cells fabricated with 4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b?]dithiophene and alkyl-substituted thiophene-3-carboxylate-containing conjugated polymers: Effect of alkyl side-chain in thiophene-3-carboxylate monomer on the device performance. <i>Polymer</i> , 2012 , 53, 3835-38	3.9 41	8
389	Enhancing silicon quantum dot uptake by pancreatic cancer cells via pluronic encapsulation and antibody targeting. <i>Journal of Solid Tumors</i> , 2012 , 2,	0.3	17
388	Nanoparticle based galectin-1 gene silencing, implications in methamphetamine regulation of HIV-1 infection in monocyte derived macrophages. <i>Journal of NeuroImmune Pharmacology</i> , 2012 , 7, 673-	-85	29
387	(ENaYbF4:Tm(3+))/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. <i>ACS Nano</i> , 2012 , 6, 8280-7	16.7	582
386	Nanoparticle-mediated targeted delivery of antiretrovirals to the brain. <i>Methods in Enzymology</i> , 2012 , 509, 41-60	1.7	37
385	Thermoelectric Properties of Hybrid OrganicIhorganic Superlattices. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 10881-10886	3.8	23
384	Anti-HIV-1 nanotherapeutics: promises and challenges for the future. <i>International Journal of Nanomedicine</i> , 2012 , 7, 5301-14	7.3	92
383	Gene Silencing of Human Neuronal Cells for Drug Addiction Therapy using Anisotropic Nanocrystals. <i>Theranostics</i> , 2012 , 2, 695-704	12.1	17
382	Stimulated Mie scattering in nanocrystals suspension. <i>Applied Physics Letters</i> , 2012 , 101, 011110	3.4	11
381	Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots. <i>Nanoscale</i> , 2012 , 4, 5163-8	7.7	22
380	Noninvasive real-time fluorescence imaging of the lymphatic uptake of BSA-IRDye 680 conjugate administered subcutaneously in mice. <i>Journal of Pharmaceutical Sciences</i> , 2012 , 101, 1744-54	3.9	10
379	Dramatic Structural Enhancement of Chirality in Photopatternable Nanocomposites of Chiral Poly(fluorene-alt-benzothiadiazole) (PFBT) in Achiral SU-8 Photoresist. <i>Advanced Functional Materials</i> , 2012 , 22, 5074-5080	15.6	14
378	Well-defined degradable cationic polylactide as nanocarrier for the delivery of siRNA to silence angiogenesis in prostate cancer. <i>Advanced Healthcare Materials</i> , 2012 , 1, 751-61	10.1	62
377	Photophysical and photovoltaic properties of a PPV type copolymer containing alternated fluorene and thiophene units. <i>Journal of Polymer Research</i> , 2012 , 19, 1	2.7	6
376	Fluorescence imaging of the lymph node uptake of proteins in mice after subcutaneous injection: molecular weight dependence. <i>Pharmaceutical Research</i> , 2012 , 29, 1843-53	4.5	39
375	Employing Photoassisted Ligand Exchange Technique in Layered Quantum Dot LEDs. <i>Journal of Nanomaterials</i> , 2012 , 2012, 1-5	3.2	2

(2011-2012)

374	Morphine and galectin-1 modulate HIV-1 infection of human monocyte-derived macrophages. Journal of Immunology, 2012 , 188, 3757-65	5.3	24
373	Optically generated reconfigurable photonic structures of elastic quasiparticles in frustrated cholesteric liquid crystals. <i>Optics Express</i> , 2012 , 20, 6870-80	3.3	27
372	Quantum dots (QDs) for photonic applications. Optical Materials Express, 2012, 2, 578	2.6	39
371	Feature issue introduction: quantum dots for photonic applications. <i>Optical Materials Express</i> , 2012 , 2, 682	2.6	5
370	Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. <i>PLoS ONE</i> , 2012 , 7, e29424	3.7	95
369	Intense visible and near-infrared upconversion photoluminescence in colloidal LiYFŒr©+ nanocrystals under excitation at 1490 nm. <i>ACS Nano</i> , 2011 , 5, 4981-6	16.7	317
368	Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. <i>Nanoscale</i> , 2011 , 3, 2003-8	7.7	158
367	Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. <i>ACS Nano</i> , 2011 , 5, 4858-64	16.7	208
366	Aromatic Polyimides Containing Main-Chain Diphenylaminofluorene B enzothiazole Motif: Fluorescence Quenching, Two-Photon Properties, and Exciplex Formation in a Solid State. <i>Macromolecules</i> , 2011 , 44, 7194-7206	5.5	12
365	Creating ligand-free silicon germanium alloy nanocrystal inks. ACS Nano, 2011 , 5, 7950-9	16.7	39
364	Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. <i>Bioconjugate Chemistry</i> , 2011 , 22, 1081-8	6.3	87
363	In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. <i>ACS Nano</i> , 2011 , 5, 413-23	16.7	340
362	Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers. <i>Nanotechnology</i> , 2011 , 22, 165101	3.4	50
361	Organically modified silica nanoparticles as drug delivery vehicles in photodynamic therapy. <i>Journal of Porphyrins and Phthalocyanines</i> , 2011 , 15, 401-411	1.8	6
360	Superior optical limiting, stabilization, and spatio-temporal reshaping of ultrashort laser pulses in an opto-stable intrinsic polymer film. <i>Optics Letters</i> , 2011 , 36, 4431-3	3	6
359	Synthesis of near-infrared silver-indium-sulfide (AgInS2) quantum dots as heavy-metal free photosensitizer for solar cell applications. <i>Chemical Physics Letters</i> , 2011 , 515, 254-257	2.5	47
358	Non-invasive tumor detection in small animals using novel functional Pluronic nanomicelles conjugated with anti-mesothelin antibody. <i>Nanoscale</i> , 2011 , 3, 1813-22	7.7	52
357	Synthesis of Monodisperse Au, Ag, and AuAg Alloy Nanoparticles with Tunable Size and Surface Plasmon Resonance Frequency. <i>Chemistry of Materials</i> , 2011 , 23, 4098-4101	9.6	172

356	Application of Gold Nanorods for Plasmonic and Magnetic Imaging of Cancer Cells. <i>Plasmonics</i> , 2011 , 6, 105-112	2.4	20
355	Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer. <i>Advanced Materials</i> , 2011 , 23, 3984-8	24	140
354	Employing materials assembly to elucidate surface interactions of amino acids with Au nanoparticles. <i>Soft Matter</i> , 2011 , 7, 6532	3.6	4
353	Multimodal imaging probes based on Gd-DOTA conjugated quantum dot nanomicelles. <i>Analyst, The</i> , 2011 , 136, 1881-6	5	35
352	Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction. <i>ACS Nano</i> , 2011 , 5, 1947-57	16.7	92
351	Twisted Bystem chromophores for all-optical switching. <i>Journal of the American Chemical Society</i> , 2011 , 133, 6675-80	16.4	109
350	Photothermal-reaction-assisted two-photon lithography of silver nanocrystals capped with thermally cleavable ligands. <i>Applied Physics Letters</i> , 2011 , 98, 133110	3.4	6
349	Employing Photo-Assisted Ligand Exchange Technique in Layered. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1286, 54		
348	Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 10172-7	11.5	91
347	Biophotonic probing of macromolecular transformations during apoptosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 12771-6	11.5	38
346	Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecommunication wavelength. <i>Applied Physics Letters</i> , 2010 , 97, 263108	3.4	10
345	In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. <i>ACS Nano</i> , 2010 , 4, 699-708	16.7	446
344	Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. <i>ACS Nano</i> , 2010 , 4, 5131-8	16.7	215
343	Nonlinear optical imaging and Raman microspectrometry of the cell nucleus throughout the cell cycle. <i>Biophysical Journal</i> , 2010 , 99, 3483-91	2.9	76
342	Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications. <i>Nanotechnology</i> , 2010 , 21, 315101	3.4	41
341	Enhancing the delivery of anti retroviral drug "Saquinavir" across the blood brain barrier using nanoparticles. <i>Current HIV Research</i> , 2010 , 8, 396-404	1.3	81
340	Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. <i>Nanotechnology</i> , 2010 , 21, 285106	3.4	51
339	Polymeric Nanocomposites Involving a Physical Blend of IR Sensitive Quantum Dots and Carbon Nanotubes for Photodetection. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3180-3184	3.8	16

(2009-2010)

338	Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17346-8	16.4	114
337	In vitro and In vivo Optical Imaging Using Water-Dispersible, Noncytotoxic, Luminescent, Silica-Coated Quantum Rods. <i>Chemistry of Materials</i> , 2010 , 22, 2261-2267	9.6	41
336	Novel pathways for enhancing nonlinearity of organics utilizing metal clusters. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 7590-4	2.8	17
335	Microscopic cascading of second-order molecular nonlinearity: New design principles for enhancing third-order nonlinearity. <i>Optics Express</i> , 2010 , 18, 8713-21	3.3	14
334	Self-noise-filtering phase-sensitive surface plasmon resonance biosensing. <i>Optics Express</i> , 2010 , 18, 143	153338	26
333	Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells in Vitro. Journal of Physical Chemistry C, 2010 , 114, 12062-12068	3.8	285
332	Large-area, near-infrared (IR) photonic crystals with colloidal gold nanoparticles embedding. <i>ACS Applied Materials & Discourse (IR)</i> photonic crystals with colloidal gold nanoparticles embedding. <i>ACS Applied Materials & Discourse (IR)</i> photonic crystals with colloidal gold nanoparticles embedding. <i>ACS Applied Materials & Discourse (IR)</i> photonic crystals with colloidal gold nanoparticles embedding. <i>ACS Applied Materials & Discourse (IR)</i> photonic crystals with colloidal gold nanoparticles embedding. <i>ACS Applied Materials & Discourse (IR)</i> photonic crystals with colloidal gold nanoparticles embedding. <i>ACS Applied Materials & Discourse (IR)</i> photonic crystals with colloidal gold nanoparticles embedding. <i>ACS Applied Materials & Discourse (IR)</i> photonic crystals with colloidal gold nanoparticles embedding.	9.5	20
331	Aggregation-enhanced two-photon absorption and up-converted fluorescence of quadrupolar 1,4-bis(cyanostyryl)benzene derivatives showing solvatochromic fluorescence. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7422		67
330	Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging. <i>Nanotechnology</i> , 2010 , 21, 145105	3.4	51
329	Two-photon lithography of sub-wavelength metallic structures in a polymer matrix. <i>Advanced Materials</i> , 2010 , 22, 3695-9	24	54
328	Influence of non-reactive solvent on optical performance, photopolymerization kinetics and morphology of nanoporous polymer gratings. <i>European Polymer Journal</i> , 2010 , 46, 937-943	5.2	7
327	Water-soluble porphyrin-polyethylene glycol conjugates with enhanced cellular uptake for photodynamic therapy. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 7130-5	1.3	8
326	MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier. <i>Brain Research</i> , 2009 , 1282, 142-55	3.7	92
325	Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals. <i>Advanced Functional Materials</i> , 2009 , 19, 853-859	15.6	583
324	Preparation of Gold Nanoparticles and their Applications in Anisotropic Nanoparticle Synthesis and Bioimaging. <i>Plasmonics</i> , 2009 , 4, 79-93	2.4	81
323	Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. <i>Small</i> , 2009 , 5, 1302-10	11	164
322	Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. <i>Small</i> , 2009 , 5, 1997-2004	11	126
321	Hyperbranched polysiloxysilane nanoparticles: surface charge control of nonviral gene delivery vectors and nanoprobes. <i>International Journal of Pharmaceutics</i> , 2009 , 376, 141-52	6.5	25

320	A novel near IR two-photon absorbing chromophore: Optical limiting and stabilization performances at an optical communication wavelength. <i>Chemical Physics Letters</i> , 2009 , 475, 250-255	2.5	91
319	Multifunctional Nanoparticles as Biocompatible Targeted Probes for Human Cancer Diagnosis and Therapy. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4655-4672		175
318	Synthesis and nanoparticle encapsulation of 3,5-difuranylvinyl-boradiaza-s-indacenes for near-infrared fluorescence imaging. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3181		25
317	Therapeutic targeting of "DARPP-32": a key signaling molecule in the dopiminergic pathway for the treatment of opiate addiction. <i>International Review of Neurobiology</i> , 2009 , 88, 199-222	4.4	19
316	Organically Modified Silica Nanoparticles with Intraparticle Heavy-Atom Effect on the Encapsulated Photosensitizer for Enhanced Efficacy of Photodynamic Therapy. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 12641-12644	3.8	70
315	Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods. <i>ACS Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials and imaging in live animals with functionalized semiconductor quantum rods. <i>ACS Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Materials & District Semiconductor) and the Applied Materials & District Semiconductor (Line of the Applied Ma</i></i>	9.5	80
314	Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. <i>Optics Express</i> , 2009 , 17, 19041-6	3.3	65
313	Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark Field Targeted Imaging of Cancer Cells. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 2676-2684	3.8	136
312	Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand. <i>Applied Physics Letters</i> , 2009 , 94, 133302	3.4	73
311	Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano, 2009, 3, 502-10	16.7	294
310	Near-infrared phosphorescent polymeric nanomicelles: efficient optical probes for tumor imaging and detection. <i>ACS Applied Materials & amp; Interfaces</i> , 2009 , 1, 1474-81	9.5	75
309	Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security. <i>Nanotechnology</i> , 2009 , 20, 185301	3.4	122
308	Nanoporous polymeric photonic crystals by emulsion holography. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3998		14
307	Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 5546-50	11.5	178
306	Multifocus Structures of Ultrashort Self-Focusing Laser Beam Observed in a Three-Photon Fluorescent Medium. <i>IEEE Journal of Quantum Electronics</i> , 2009 , 45, 816-824	2	5
305	Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 6957-61	1.3	4
304	Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: Implication for HIV-1 neuropathogenesis in the context of drug abuse. <i>Brain Research</i> , 2008 , 1203, 133-48	3.7	103
303	Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching. <i>Applied Physics Letters</i> , 2008 , 93, 203509	3.4	5

(2008-2008)

302	High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. <i>Nano Letters</i> , 2008 , 8, 3834-8	11.5	816
301	Zinc Oxide Nanocrystals for Non-resonant Nonlinear Optical Microscopy in Biology and Medicine. Journal of Physical Chemistry C, 2008, 112, 10721-10724	3.8	147
300	Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. <i>ACS Nano</i> , 2008 , 2, 449-56	16.7	252
299	Robust microstructures using UV photopatternable semiconductor nanocrystals. <i>Nano Letters</i> , 2008 , 8, 3262-5	11.5	54
298	Double-layer fabrication scheme for large-area polymeric photonic crystal membrane on silicon surface by multibeam interference lithography. <i>Optics Letters</i> , 2008 , 33, 1303-5	3	6
297	Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids. <i>Optics Express</i> , 2008 , 16, 10617-32	3.3	28
296	Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood-brain barrier. <i>Bioconjugate Chemistry</i> , 2008 , 19, 1179-85	6.3	88
295	Optically and Magnetically Doped Organically Modified Silica Nanoparticles as Efficient Magnetically Guided Biomarkers for Two-Photon Imaging of Live Cancer Cells <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7972-7977	3.8	109
294	Multiphoton absorbing materials: molecular designs, characterizations, and applications. <i>Chemical Reviews</i> , 2008 , 108, 1245-330	68.1	1683
293	Water-soluble two-photon absorbing nitrosyl complex for light-activated therapy through nitric oxide release. <i>Molecular Pharmaceutics</i> , 2008 , 5, 389-98	5.6	51
292	Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell. <i>Applied Physics Letters</i> , 2008 , 92, 191107	3.4	51
291	Dynamic properties and optical phase conjugation of two-photon pumped ultrashort blue stimulated emission in a chromophore solution. <i>Physical Review A</i> , 2008 , 77,	2.6	10
2 90	Binding Characteristics of Surface Ligands on PbSe QDs and Impact on Electrical Conductivity. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1113, 1		
289	Laser nanotrapping and manipulation of nanoscale objects using subwavelength apertured plasmonic media. <i>Journal of Applied Physics</i> , 2008 , 103, 084316	2.5	7
288	Templated Synthesis of Gold Nanorods (NRs): The Effects of Cosurfactants and Electrolytes on the Shape and Optical Properties. <i>Topics in Catalysis</i> , 2008 , 47, 49-60	2.3	39
287	Conformationally restricted dipyrromethene boron difluoride (BODIPY) dyes: highly fluorescent, multicolored probes for cellular imaging. <i>Chemistry - A European Journal</i> , 2008 , 14, 5812-9	4.8	179
286	Synthesis, Characterization, Two-Photon Absorption, and Optical Limiting Properties of Ladder-Type Oligo-p-phenylene-Cored Chromophores. <i>Advanced Functional Materials</i> , 2008 , 18, 2770-27	7 75 .6	102
285	Multiplex Imaging of Pancreatic Cancer Cells by Using Functionalized Quantum Rods. <i>Advanced Materials</i> , 2008 , 20, 1412-1417	24	67

284	Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. <i>Biosensors and Bioelectronics</i> , 2008 , 23, 886-91	11.8	70
283	Mesothelin is a specific biomarker of invasive cancer in the Barrett-associated adenocarcinoma progression model: translational implications for diagnosis and therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2008 , 4, 295-301	6	18
282	Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano, 2008, 2, 873-8	16.7	581
281	Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots. <i>Nano Letters</i> , 2008 , 8, 2688-92	11.5	87
280	Intraparticle Energy Transfer and Fluorescence Photoconversion in Nanoparticles: An Optical Highlighter Nanoprobe for Two-Photon Bioimaging. <i>Chemistry of Materials</i> , 2007 , 19, 5650-5656	9.6	47
279	"Switched-on" flexible chalcogenopyrylium photosensitizers. Changes in photophysical properties upon binding to DNA. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 9686-92	3.4	16
278	Two-Photon Excitation of Fluorogenic Probes for Redox Metabolism: Dramatic Enhancement of Optical Contrast Ratio by Two-Photon Excitation Journal of Physical Chemistry C, 2007, 111, 8872-8877	3.8	13
277	Water-Dispersible Polymeric Structure Co-encapsulating a Novel Hexa-peri-hexabenzocoronene Core Containing Chromophore with Enhanced Two-Photon Absorption and Magnetic Nanoparticles for Magnetically Guided Two-Photon Cellular Imaging. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16846	3.8 -16851	30 I
276	Formation of ZnTe Nanowires by Oriented Attachment. <i>Chemistry of Materials</i> , 2007 , 19, 4108-4110	9.6	78
275	Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. <i>Nano Letters</i> , 2007 , 7, 761-5	11.5	173
274	Imaging pancreatic cancer using surface-functionalized quantum dots. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 6969-72	3.4	99
273	Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. <i>Nano Letters</i> , 2007 , 7, 2835-42	11.5	283
272	Structure-activity relationship among purpurinimides and bacteriopurpurinimides: trifluoromethyl substituent enhanced the photosensitizing efficacy. <i>Journal of Medicinal Chemistry</i> , 2007 , 50, 1754-67	8.3	49
271	Two-photon absorption based optical limiting and stabilization by using a CdTe quantum dot solution excited at optical communication wavelength of ~1300nm. <i>Applied Physics Letters</i> , 2007 , 90, 181108	3.4	30
270	Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. <i>Biosensors and Bioelectronics</i> , 2007 , 23, 627-32	11.8	46
269	Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2669-75	16.4	598
268	Gold Nanorods Coated with Multilayer Polyelectrolyte as Contrast Agents for Multimodal Imaging. Journal of Physical Chemistry C, 2007 , 111, 12552-12557	3.8	194
267	A Monomethine Cyanine Dye Cyan 40 for Two-photon Excited Fluorescence Detection of Nucleic Acids and Their Visualization in Live Cells . <i>Photochemistry and Photobiology</i> , 2007 , 77, 138-145	3.6	1

(2006-2007)

Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation. <i>Journal of Applied Physics</i> , 2007 , 101, 083108	2.5	31
Polymeric nanocomposite infrared photovoltaics enhanced by pentacene. <i>Applied Physics Letters</i> , 2007 , 90, 252112	3.4	18
Optical trapping of director structures and defects in liquid crystals using laser tweezers. <i>Optics Express</i> , 2007 , 15, 4359-71	3.3	40
A quantum chemical approach to the design of chiral negative index materials. <i>Optics Express</i> , 2007 , 15, 5730-41	3.3	45
Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range. <i>Optics Express</i> , 2007 , 15, 12818-33	3.3	138
Shape Control of CdS Nanocrystals in One-Pot Synthesis. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 24	47 ,2 45	8 1 3 7
New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. <i>Molecular Pharmaceutics</i> , 2007 , 4, 289-97	5.6	97
Emerging Opportunities at the Interface of Photonics, Nanotechnology and Biotechnology. <i>Molecular Crystals and Liquid Crystals</i> , 2006 , 446, 1-10	0.5	12
Solution-Processed Hybrid Polymer-Quantum Dot Nanocomposite for Infrared Photodetection and Photorefractivity. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 939, 1		
DNA-Ormocer based biocomposite for fabrication of photonic structures. <i>Applied Physics Letters</i> , 2006 , 88, 213109	3.4	16
Laser trapping in anisotropic fluids and polarization-controlled particle dynamics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 18048-53	11.5	65
Polyelectrolyte Stabilized Nanowires from Fe3O4Nanoparticles via Magnetic Field Induced Self-Assembly. <i>Chemistry of Materials</i> , 2006 , 18, 591-593	9.6	111
Control of the Morphology and Size of PbS Nanowires Using Gold Nanoparticles. <i>Chemistry of Materials</i> , 2006 , 18, 5965-5972	9.6	52
Degenerate two-/three-photon absorption and optical power-limiting properties in femtosecond regime of a multi-branched chromophore. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2490		90
Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal. <i>Applied Physics Letters</i> , 2006 , 88, 091102	3.4	64
Light-Harvesting Chromophores with Metalated Porphyrin Cores for Tuned Photosensitization of Singlet Oxygen via Two-Photon Excited FRET. <i>Chemistry of Materials</i> , 2006 , 18, 3682-3692	9.6	102
Large Cross-Section Enhancement and Intramolecular Energy Transfer upon Multiphoton Absorption of Hindered Diphenylaminofluorene-C60 Dyads and Triads. <i>Chemistry of Materials</i> , 2006 , 18, 4065-4074	9.6	45
Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. <i>Molecular Pharmaceutics</i> , 2006 , 3, 415-23	5.6	99
	Applied Physics, 2007, 101, 083108 Polymeric nanocomposite infrared photovoltaics enhanced by pentacene. Applied Physics Letters, 2007, 90, 252112 Optical trapping of director structures and defects in liquid crystals using laser tweezers. Optics Express, 2007, 15, 4359-71 A quantum chemical approach to the design of chiral negative index materials. Optics Express, 2007, 15, 5730-41 Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range. Optics Express, 2007, 15, 12818-33 Shape Control of CdS Nanocrystals in One-Pot Synthesis. Journal of Physical Chemistry C, 2007, 111, 24 New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. Molecular Pharmaceutics, 2007, 4, 289-97 Emerging Opportunities at the Interface of Photonics, Nanotechnology and Biotechnology. Molecular Crystals and Liquid Crystals, 2006, 446, 1-10 Solution-Processed Hybrid Polymer-Quantum Dot Nanocomposite for Infrared Photodetection and Photorefractivity. Materials Research Society Symposia Proceedings, 2006, 939, 1 DNA-Ormocer based biocomposite for fabrication of photonic structures. Applied Physics Letters, 2006, 88, 213109 Laser trapping in anisotropic fluids and polarization-controlled particle dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18048-53 Polyelectrolyte Stabilized Nanowires from Fe304Nanoparticles via Magnetic Field Induced Self-Assembly. Chemistry of Materials, 2006, 18, 591-593 Control of the Morphology and Size of PbS Nanowires Using Gold Nanoparticles. Chemistry of Materials, 2006, 18, 5965-5972 Degenerate two-/three-photon absorption and optical power-limiting properties in femtosecond regime of a multi-branched chromophore. Journal of Materials Chemistry, 2006, 16, 2490 Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal. Applied Physics Letters, 2006, 88, 091102 Light-Harvesting Chromophores with	Applied Physics, 2007, 101, 083108 Polymeric nanocomposite infrared photovoltaics enhanced by pentacene. Applied Physics Letters, 2007, 90, 252112 Opkical trapping of director structures and defects in liquid crystals using laser tweezers. Optics Express, 2007, 15, 4359-71 A quantum chemical approach to the design of chiral negative index materials. Optics Express, 2007, 15, 5730-41 Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range. Optics Express, 2007, 15, 12818-33 Shape Control of CdS Nanocrystals in One-Pot Synthesis. Journal of Physical Chemistry C, 2007, 111, 2447s245 New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. Molecular Pharmaceutics, 2007, 4, 289-97 Emerging Opportunities at the Interface of Photonics, Nanotechnology and Biotechnology. Molecular Crystals and Liquid Crystals, 2006, 446, 1-10 Solution-Processed Hybrid Polymer-Quantum Dot Nanocomposite for Infrared Photodetection and Photorefractivity. Materials Research Society Symposia Proceedings, 2006, 939, 1 DNA-Ormocer based biocomposite for fabrication of photonic structures. Applied Physics Letters, 2006, 82, 213109 Laser trapping in anisotropic fluids and polarization-controlled particle dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18048-53 Polyelectrolyte Stabilized Nanowires from Fe3O4Nanoparticles via Magnetic Field Induced Self-Assembly. Chemistry of Materials, 2006, 18, 591-593 Control of the Morphology and Size of PbS Nanowires Using Gold Nanoparticles. Chemistry of Materials, 2006, 18, 5965-5972 Degenerate two-/three-photon absorption and optical power-limiting properties in femtosecond regime of a multi-branched chromophore. Journal of Materials Chemistry, 2006, 16, 2490 Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal. Applied Physics Letters, 2006, 88, 091102 Light-Harvesting Chromophore

248	Shape control of PbSe nanocrystals using noble metal seed particles. <i>Nano Letters</i> , 2006 , 6, 709-14	11.5	99
247	Experimental and quantum chemical studies of cooperative enhancement of three-photon absorption, optical limiting, and stabilization behaviors in multibranched and dendritic structures. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 14604-10	3.4	23
246	Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex. <i>Optics Letters</i> , 2006 , 31, 359-61	3	34
245	A general approach to binary and ternary hybrid nanocrystals. <i>Nano Letters</i> , 2006 , 6, 875-81	11.5	568
244	Photosensitizers derived from 132-oxo-methyl pyropheophorbide-a: enhanced effect of indium(III) as a central metal in in vitro and in vivo photosensitizing efficacy. <i>Photochemistry and Photobiology</i> , 2006 , 82, 626-34	3.6	36
243	Laser-driven synthesis and magnetic properties of iron nanoparticles. <i>Journal of Nanoparticle Research</i> , 2006 , 8, 335-342	2.3	33
242	Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3879-85	3.4	347
241	A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. <i>Bioconjugate Chemistry</i> , 2005 , 16, 1264-74	6.3	79
240	Optical microfabrication of highly reflective volume Bragg gratings. <i>Applied Physics Letters</i> , 2005 , 86, 131113	3.4	22
239	Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 11539-44	11.5	527
238	Synthesis, two- and three-photon absorption, and optical limiting properties of fluorene-containing ferrocene derivatives. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3488		48
237	EConjugated Dendritic Nanosized Chromophore with Enhanced Two-Photon Absorption. <i>Chemistry of Materials</i> , 2005 , 17, 6004-6011	9.6	109
236	Ultrafast dynamics in multibranched structures with enhanced two-photon absorption. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10128-9	16.4	117
235	Quantum chemical studies of three-photon absorption of some stilbenoid chromophores. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 11037-42	2.8	19
234	High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures. <i>Optics Express</i> , 2005 , 13, 3787-94	3.3	64
233	Direct four-photon excitation of amplified spontaneous emission in a nonlinear organic chromophore. <i>Optics Letters</i> , 2005 , 30, 1369-71	3	13
232	Photopatterning hybrid solgel glass materials prepared from ethylene tellurate and alkoxysilane. Journal of Non-Crystalline Solids, 2005 , 351, 2440-2445	3.9	5
231	Synthesis of C60-diphenylaminofluorene dyads with two-photon absorbing characteristics. <i>Synthetic Metals</i> , 2005 , 154, 185-188	3.6	13

230	Quasi-reversible photoluminescence quenching of stable dispersions of silicon nanoparticles. Journal of Materials Chemistry, 2005 , 15, 2028		26
229	Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. <i>Journal of the American Chemical Society</i> , 2005 , 127, 11364-71	16.4	404
228	Novel two-photon-absorbing, 1,10-phenanthroline-containing Econjugated chromophores and their nickel(II) chelated complexes with quenched emissions. <i>Journal of Materials Chemistry</i> , 2005 , 15, 579-587		62
227	Developments and Opportunities in Polymer-Based New Frontiers of Nanophotonics and Biophotonics. <i>ACS Symposium Series</i> , 2005 , 6-17	0.4	
226	Photosensitization of Singlet Oxygen via Two-Photon-Excited Fluorescence Resonance Energy Transfer in a Water-Soluble Dendrimer. <i>Chemistry of Materials</i> , 2005 , 17, 2267-2275	9.6	168
225	Monodispersed InP Quantum Dots Prepared by Colloidal Chemistry in a Noncoordinating Solvent. <i>Chemistry of Materials</i> , 2005 , 17, 3754-3762	9.6	119
224	Ab initio studies of two-photon absorption of some stilbenoid chromophores. <i>Journal of Chemical Physics</i> , 2005 , 122, 224309	3.9	17
223	Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 279-84	11.5	400
222	Degenerate two-photon-absorption spectral studies of highly two-photon active organic chromophores. <i>Journal of Chemical Physics</i> , 2004 , 120, 5275-84	3.9	66
221	Infrared Emitting Dye and/or Two Photon Excitable Fluorescent Dye Encapsulated in Biodegradable Polymer Nanoparticles for Bioimaging. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 845, 315		1
220	Detection of trophic factor activated signaling molecules in cells by a compact fiber-optic sensor. <i>Biosensors and Bioelectronics</i> , 2004 , 20, 345-9	11.8	17
219	Study of luminescence properties of Er3+-ions in new tellurite glasses. <i>Optical Materials</i> , 2004 , 26, 267-	23.9	75
218	Synthesis, properties, and photodynamic properties in vitro of heavy-chalcogen analogues of tetramethylrosamine. <i>Bioorganic and Medicinal Chemistry</i> , 2004 , 12, 2537-44	3.4	77
217	Cellular Signaling and Protein Protein Interactions Studied Using Fluorescence Recovery after Photobleaching Journal of Physical Chemistry B, 2004 , 108, 10540-10546	3.4	16
216	Toward Highly Active Two-Photon Absorbing Liquids. Synthesis and Characterization of 1,3,5-Triazine-Based Octupolar Molecules. <i>Chemistry of Materials</i> , 2004 , 16, 185-194	9.6	198
215	Fluorescence Resonance Energy Transfer in Novel Multiphoton Absorbing Dendritic Structures Journal of Physical Chemistry B, 2004 , 108, 8592-8600	3.4	75
214	Heteroatom Substitution Induced Changes in Excited-State Photophysics and Singlet Oxygen Generation in Chalcogenoxanthylium Dyes: IEffect of Sulfur and Selenium Substitutions II Journal of Physical Chemistry B, 2004 , 108, 8668-8672	3.4	99
213	Degenerate nonlinear absorption and optical power limiting properties of asymmetrically substituted stilbenoid chromophores. <i>Journal of Materials Chemistry</i> , 2004 , 14, 982		86

212	Charge Carrier Transport in Poly(N-vinylcarbazole):CdS Quantum Dot Hybrid Nanocomposite. Journal of Physical Chemistry B, 2004 , 108, 1556-1562	3.4	85
211	Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals. <i>Applied Physics Letters</i> , 2004 , 85, 6095-6097	3.4	47
210	Singlet oxygen generation via two-photon excited FRET. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5380-1	16.4	208
209	Polymer science and technology for new generation photonics and biophotonics. <i>Current Opinion in Solid State and Materials Science</i> , 2004 , 8, 11-19	12	38
208	Modified Z-scan techniques for investigations of nonlinear chiroptical effects. <i>Optics Express</i> , 2004 , 12, 5209-14	3.3	37
207	Stimulated Rayleigh-Bragg scattering enhanced by two-photon excitation. <i>Optics Express</i> , 2004 , 12, 595	2 ₃ 651	18
206	Linear and nonlinear optical studies in photonic crystal alloys. <i>Optics Letters</i> , 2004 , 29, 2276-8	3	4
205	2003,		365
204	Fluorescence Upconversion Properties of Er3+-Doped TiO2 and BaTiO3 Nanocrystallites. <i>Chemistry of Materials</i> , 2003 , 15, 3650-3655	9.6	244
203	Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. <i>Journal of the American Chemical Society</i> , 2003 , 125, 786	đ-5:4	786
202	Near-Field Optical Imaging of Transient Absorption Dynamics in Organic Nanocrystals. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13551-13553	3.4	11
201	Fluorescence resonance energy transfer in a novel two-photon absorbing system. <i>Journal of the American Chemical Society</i> , 2003 , 125, 1448-9	16.4	110
200	Surfactant-Imposed Interference in the Optical Characterization of GaP Nanocrystals. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 11622-11625	3.4	13
199	Ultrashort 1.5-microm laser excited upconverted stimulated emission based on simultaneous three-photon absorption. <i>Optics Letters</i> , 2003 , 28, 719-21	3	24
198	Two-photon excited intramolecular energy transfer and light-harvesting effect in novel dendritic systems. <i>Optics Letters</i> , 2003 , 28, 768-70	3	25
197	Charge carrier mobility in an organic-inorganic hybrid nanocomposite. <i>Applied Physics Letters</i> , 2003 , 82, 406-408	3.4	42
196	Synthesis and properties of substituted (p-aminostyryl)-1-(3-sulfooxypropyl)pyridinium inner salts as a new class of two-photon pumped lasing dyes. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2499		63
195	Optical Properties of Polymer-Embedded Silicon Nanoparticles. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 789, 168		1

(2001-2003)

Spectroscopy Studies of InP Nanocrystals Synthesized Through a Fast Reaction. Materials Research 194 Society Symposia Proceedings, 2003, 789, 276 Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals. Applied Physics 193 3.4 228 Letters, 2003, 83, 284-286 Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as 192 63 3.4 a distributed feedback element. Applied Physics Letters, 2003, 83, 2733-2735 Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in 56 191 3.4 isotropic phase. Applied Physics Letters, 2003, 82, 4717-4719 A monomethine cyanine dye Cyan 40 for two-photon-excited fluorescence detection of nucleic 190 3.6 33 acids and their visualization in live cells. Photochemistry and Photobiology, 2003, 77, 138-45 Observation of stimulated emission by direct three-photon excitation. Nature, 2002, 415, 767-70 189 326 DC Magnetic Field Induced Magnetocytolysis of Cancer Cells Targeted by LH-RH Magnetic 188 51 3.7 Nanoparticles in vitro. *Biomedical Microdevices*, **2002**, 4, 293-299 A New Approach to Design Light Emitting Devices Using Electroactive Dyes. Materials Research 187 Society Symposia Proceedings, 2002, 734, 9241 Near-Field Probing Surface Plasmon Enhancement Effect on Two-Photon Emission. Journal of 186 3.4 33 Physical Chemistry B, **2002**, 106, 4040-4042 Electroluminescence Properties of Systematically Derivatized Organic Chromophores Containing 185 9.6 46 Electron Donor and Acceptor Groups. Chemistry of Materials, 2002, 14, 4044-4048 Enhancement of two-photon emission in photonic crystals. Optics Letters, 2002, 27, 351-3 184 3 25 Photorefractive inorganic organic polymer-dispersed liquid-crystal nanocomposite photosensitized 183 with cadmium sulfide quantum dots. Optics Letters, 2002, 27, 1330-2 New technique for degenerate two-photon absorption spectral measurements using femtosecond 182 38 3.3 continuum generation. Optics Express, 2002, 10, 566-74 Upconversion in Er3+:ZrO2 Nanocrystals. Journal of Physical Chemistry B, 2002, 106, 1909-1912 181 3.4 353 Nanochemistry: Synthesis and Characterization of Multifunctional Nanoclinics for Biological 180 9.6 289 Applications. Chemistry of Materials, 2002, 14, 3715-3721 Inorganic: Organic Hybrid Nanocomposites for Photorefractivity at Communication Wavelengths. 179 64 3.4 Journal of Physical Chemistry B, 2002, 106, 967-970 Study of Two-Photon Absorption Spectral Property of a Novel Nonlinear Optical Chromophore 178 3.4 33 Using Femtosecond Continuum. Journal of Physical Chemistry B, 2002, 106, 11081-11084 Hybrid near-field optical memory and photofabrication in dye-doped polymer film. Optics 20 Communications, **2001**, 200, 9-13

176	Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry. <i>Journal of Biomedical Optics</i> , 2001 , 6, 319-25	3.5	17
175	Near-field microscopy and spectroscopy of third-harmonic generation and two-photon excitation in nonlinear organic crystals. <i>Applied Physics Letters</i> , 2001 , 79, 2681-2683	3.4	5
174	Nanoscopic study of second-harmonic generation in organic crystals with collection-mode near-field scanning optical microscopy. <i>Optics Letters</i> , 2001 , 26, 725-7	3	19
173	Diphenylaminofluorene-Based Two-Photon-Absorbing Chromophores with Various Electron Acceptors. <i>Chemistry of Materials</i> , 2001 , 13, 1896-1904	9.6	252
172	Second-harmonic and sum-frequency imaging of organic nanocrystals with photon scanning tunneling microscope. <i>Applied Physics Letters</i> , 2000 , 77, 2946-2948	3.4	30
171	Highly efficient infrared-to-visible energy upconversion in Er(3+):Y(2)O(3). Optics Letters, 2000, 25, 338-	40	88
170	Nanophotonics: Interactions, Materials, and Applications. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 7577-7587	3.4	95
169	New Class of Two-Photon-Absorbing Chromophores Based on Dithienothiophene. <i>Chemistry of Materials</i> , 2000 , 12, 284-286	9.6	297
168	Novel Two-Photon Absorbing Dendritic Structures. <i>Chemistry of Materials</i> , 2000 , 12, 2838-2841	9.6	167
167	Two-Photon Excitation and Optical Spatial-Profile Reshaping via a Nonlinear Absorbing Medium Journal of Physical Chemistry A, 2000 , 104, 4805-4810	2.8	96
166	Two-photon fluorescence imaging and spectroscopy of nanostructured organic materials using a photon scanning tunneling microscope. <i>Applied Physics Letters</i> , 2000 , 76, 1-3	3.4	63
165	High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout. <i>Applied Physics Letters</i> , 1999 , 74, 1338-1340	3.4	160
164	Dynamics of photorefractive grating erasure in polymeric composites. <i>Journal of Applied Physics</i> , 1999 , 85, 38-43	2.5	29
163	Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite. <i>Chemical Physics</i> , 1999 , 245, 417-428	2.3	80
162	Observation of the Photorefractive Effect in a Hybrid OrganicIhorganic Nanocomposite. <i>Journal of the American Chemical Society</i> , 1999 , 121, 5287-5295	16.4	131
161	Cooperative Enhancement of Two-Photon Absorption in Multi-branched Structures. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 10741-10745	3.4	394
160	Confocal enhanced optical coherence tomography for nondestructive evaluation of paints and coatings. <i>Optics Letters</i> , 1999 , 24, 1808-10	3	24
159	Highly Active Two-Photon Dyes: Design, Synthesis, and Characterization toward Application. <i>Chemistry of Materials</i> , 1998 , 10, 1863-1874	9.6	645

158	Polymerization in a Reverse Micelle Nanoreactor: Preparation of Processable Poly(p-phenylenevinylene) with Controlled Conjugation Length. <i>Chemistry of Materials</i> , 1998 , 10, 1065-	1868	22
157	Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting. <i>Optics Letters</i> , 1998 , 23, 1742-4	3	75
156	A reactive laser ablation source for the production of thin films. <i>Review of Scientific Instruments</i> , 1998 , 69, 3028-3030	1.7	12
155	Inorganic- Organic Hybrid Materials For Photonics. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 519, 217		10
154	Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material. Journal of Applied Physics, 1997, 81, 2529-2537	2.5	121
153	Multifunctional polymers as multi-role materials for photonics. <i>Macromolecular Symposia</i> , 1997 , 118, 467-472	0.8	19
152	Two-photon pumped partially cross-linked polymer laser. <i>Applied Physics Letters</i> , 1997 , 71, 1619-1621	3.4	29
151	Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite. <i>Journal of Applied Physics</i> , 1997 , 82, 5923-5931	2.5	39
150	Thermal fixing of refractive index gratings in a photorefractive polymer. <i>Applied Physics Letters</i> , 1997 , 71, 1828-1830	3.4	26
149	Thin-Film Formation by Laser-Assisted Molecular Beam Deposition. ACS Symposium Series, 1997, 183-19	970.4	1
148	Photorefractivity in a Novel Polymer Composite with High Diffraction Efficiency and Broad Optical Transparency. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 3530-3534	3.4	23
147	Solid-state tunable cavity lasing in a poly(para-phenylene vinylene) derivative alternating block co-polymer. <i>Applied Physics Letters</i> , 1997 , 71, 999-1001	3.4	48
146	OrganicIhorganic heterojunction light emitting diodes based on poly(p-phenylene vinylene)/cadmium sulfide thin films. <i>Applied Physics Letters</i> , 1997 , 71, 1388-1390	3.4	50
145	Novel Multifunctional Polymeric Composites for Photonics. ACS Symposium Series, 1997, 533-543	0.4	
144	Phase-conjugate backward stimulated emission from a two-photon-pumped lasing medium. <i>Optics Letters</i> , 1997 , 22, 10-2	3	19
143	Spectral properties of backward stimulated scattering in liquid carbon disulfide. <i>Journal of Experimental and Theoretical Physics</i> , 1997 , 85, 850-856	1	6
142	The influence of structure and environment on spectroscopic and lasing properties of dye-doped glasses. <i>Optical Materials</i> , 1997 , 8, 43-54	3.3	5
141	Intracavity upconversion lasing within a Q-switched Nd: YAG laser. <i>Optics Communications</i> , 1997 , 133, 175-179	2	18

140	Two-photon pumped frequency-upconversion lasing of a new blue-green dye material. <i>Optics Communications</i> , 1997 , 140, 49-52	2	59
139	Novel, Organically Doped, Sol G el-Derived Materials for Photonics: Multiphasic Nanostructured Composite Monoliths and Optical Fibers. <i>Applied Organometallic Chemistry</i> , 1997 , 11, 107-127	3.1	60
138	Upconversion dye-doped polymer fiber laser. <i>Applied Physics Letters</i> , 1996 , 68, 3549-3551	3.4	62
137	Characterization of a New Solvent-Sensitive Two-Photon-Induced Fluorescent (Aminostyryl)pyridinium Salt Dye. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 4521-4525		104
136	Synthesis, Characterization, and Second-Order Optical Nonlinearity of a Polyurethane Structure Functionalized with a Hemicyanine Dye. <i>Macromolecules</i> , 1996 , 29, 861-867	5.5	84
135	Multiphasic Nanostructured Composite: Multi-Dye Tunable Solid State Laser. <i>Journal of the American Chemical Society</i> , 1996 , 118, 2985-2991	16.4	31
134	Sol C iel-Processed SiO2/TiO2/Poly(vinylpyrrolidone) Composite Materials for Optical Waveguides. <i>Chemistry of Materials</i> , 1996 , 8, 235-241	9.6	200
133	Multiphoton Resonant Nonlinear Optical Processes in Organic Molecules. <i>ACS Symposium Series</i> , 1996 , 225-236	0.4	2
132	Efficient, two-photon pumped green upconverted cavity lasing in a new dye. <i>Optics Communications</i> , 1996 , 124, 33-37	2	124
131	New laser medium: dye-doped sol-gel fiber. <i>Optics Communications</i> , 1996 , 126, 66-72	2	19
130	Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials. <i>Optics Communications</i> , 1995 , 117, 133-136	2	134
129	Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting. <i>Optics Communications</i> , 1995 , 119, 587-590	2	37
128	Nonelectrooptic nonlocal photorefractive effect in a polymer composite. <i>Applied Physics Letters</i> , 1995 , 67, 311-313	3.4	14
127	A New Class of Heterocyclic Compounds for Nonlinear Optics. <i>Chemistry of Materials</i> , 1995 , 7, 816-821	9.6	44
126	Removal of ribonucleases from solution using an inhibitor-based sol-gel-derived Biogel. <i>Analytical Chemistry</i> , 1995 , 67, 1935-1939	7.8	23
125	Two-photon absorption and optical-limiting properties of novel organic compounds. <i>Optics Letters</i> , 1995 , 20, 435-7	3	411
124	Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound. <i>Optics Letters</i> , 1995 , 20, 1524-6	3	123
123	Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system. <i>Optics Letters</i> , 1995 , 20, 2393	3	82

122	Two-photon pumped cavity lasing in novel dye doped bulk matrix rods. <i>Applied Physics Letters</i> , 1995 , 67, 3703-3705	3.4	163
121	Aromatic Heterocyclic Rings as Active Components in the Design of Second-Order Nonlinear Optical Chromophores. <i>ACS Symposium Series</i> , 1995 , 205-222	0.4	3
120	Newly Synthesized Dyes and Their Polymer/Glass Composites for One- and Two-Photon Pumped Solid-State Cavity Lasing. <i>Chemistry of Materials</i> , 1995 , 7, 1979-1983	9.6	163
119	Optical limiting effect in a two-photon absorption dye doped solid matrix. <i>Applied Physics Letters</i> , 1995 , 67, 2433-2435	3.4	310
118	Photorefractive Polymer with Side-Chain Second-Order Nonlinear Optical and Charge-Transporting Groups. <i>Chemistry of Materials</i> , 1995 , 7, 1237-1242	9.6	60
117	Sol-Gel Derived Polyvinylpyrrolidone/Silicon Oxide Composite Materials and Novel Fabrication Technique for Channel Waveguide. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 392, 103		6
116	Geometrical effect on the nonlinear optical properties of model rigid-rod polymers. Ab initio time-dependent coupled Hartree-Fock studies. <i>Chemical Physics Letters</i> , 1995 , 234, 390-394	2.5	5
115	Enhanced photorefractive performance in a photorefractive polymeric composite. <i>Journal of Applied Physics</i> , 1994 , 76, 4995-4998	2.5	25
114	Nonlinear optical effects in molecules and polymers: Issues and opportunities. <i>International Journal of Quantum Chemistry</i> , 1994 , 52, 395-410	2.1	17
113	Dye film leaky waveguide laser. <i>Optics Communications</i> , 1994 , 111, 82-85	2	17
113	Dye film leaky waveguide laser. <i>Optics Communications</i> , 1994 , 111, 82-85 Glucose Biosensor Based on a Sol-Gel-Derived Platform. <i>Analytical Chemistry</i> , 1994 , 66, 3139-3144	7.8	17
112	Glucose Biosensor Based on a Sol-Gel-Derived Platform. <i>Analytical Chemistry</i> , 1994 , 66, 3139-3144 A Novel Protocol to Entrap Active Urease in a Tetraethoxysilane-Derived Sol-Gel Thin-Film	7.8	232
112	Glucose Biosensor Based on a Sol-Gel-Derived Platform. <i>Analytical Chemistry</i> , 1994 , 66, 3139-3144 A Novel Protocol to Entrap Active Urease in a Tetraethoxysilane-Derived Sol-Gel Thin-Film Architecture. <i>Chemistry of Materials</i> , 1994 , 6, 1596-1598 Sol-Gel Processed Conjugated Polymers for Optical Waveguides. <i>Molecular Crystals and Liquid</i>	7.8	232
112 111 110	Glucose Biosensor Based on a Sol-Gel-Derived Platform. <i>Analytical Chemistry</i> , 1994 , 66, 3139-3144 A Novel Protocol to Entrap Active Urease in a Tetraethoxysilane-Derived Sol-Gel Thin-Film Architecture. <i>Chemistry of Materials</i> , 1994 , 6, 1596-1598 Sol-Gel Processed Conjugated Polymers for Optical Waveguides. <i>Molecular Crystals and Liquid Crystals</i> , 1993 , 224, 33-43 Affinity of antifluorescein antibodies encapsulated within a transparent sol-gel glass. <i>Analytical</i>	7.8 9.6	232679
112 111 110	Glucose Biosensor Based on a Sol-Gel-Derived Platform. <i>Analytical Chemistry</i> , 1994 , 66, 3139-3144 A Novel Protocol to Entrap Active Urease in a Tetraethoxysilane-Derived Sol-Gel Thin-Film Architecture. <i>Chemistry of Materials</i> , 1994 , 6, 1596-1598 Sol-Gel Processed Conjugated Polymers for Optical Waveguides. <i>Molecular Crystals and Liquid Crystals</i> , 1993 , 224, 33-43 Affinity of antifluorescein antibodies encapsulated within a transparent sol-gel glass. <i>Analytical Chemistry</i> , 1993 , 65, 2671-2675 Anisotropy in the complex refractive index and the third-order nonlinear optical susceptibility of a	7.8 9.6 7.8	232 67 9
112 111 110 109 108	Glucose Biosensor Based on a Sol-Gel-Derived Platform. <i>Analytical Chemistry</i> , 1994 , 66, 3139-3144 A Novel Protocol to Entrap Active Urease in a Tetraethoxysilane-Derived Sol-Gel Thin-Film Architecture. <i>Chemistry of Materials</i> , 1994 , 6, 1596-1598 Sol-Gel Processed Conjugated Polymers for Optical Waveguides. <i>Molecular Crystals and Liquid Crystals</i> , 1993 , 224, 33-43 Affinity of antifluorescein antibodies encapsulated within a transparent sol-gel glass. <i>Analytical Chemistry</i> , 1993 , 65, 2671-2675 Anisotropy in the complex refractive index and the third-order nonlinear optical susceptibility of a stretch-oriented film of poly(p-phenylene vinylene). <i>Journal of Applied Physics</i> , 1993 , 74, 525-530 Dynamics of third-order nonlinearity of canthaxanthin carotenoid by the optically heterodyned	7.8 9.6 7.8 2.5	232 67 9 163 21

104	Multiple mode-locking of the Q-switched Nd: YAG laser with a coupled resonant cavity. <i>Optics Communications</i> , 1993 , 96, 321-329	2	3
103	Structure and morphology of sol-gel prepared polymer-ceramic composite thin films. <i>Polymer</i> , 1993 , 34, 4607-4612	3.9	19
102	Characterization of Rhodamine 6G-Doped Thin Sol-Gel Films. <i>Applied Spectroscopy</i> , 1993 , 47, 229-234	3.1	56
101	Chemical Sensor Based on an Artificial Receptor Element Trapped in a Porous Sol-Gel Glass Matrix. <i>Applied Spectroscopy</i> , 1993 , 47, 1700-1703	3.1	27
100	Observation of photorefractivity in a fullerene-doped polymer composite. <i>Physical Review B</i> , 1992 , 46, 9900-9902	3.3	100
99	Frequency dependence of linear and nonlinear optical properties of conjugated polyenes: An ab initio time-dependent coupled Hartree-Fock study. <i>Physical Review A</i> , 1992 , 45, 2763-2770	2.6	58
98	Photorefractive effect in a new organic system of doped nonlinear polymer. <i>Applied Physics Letters</i> , 1992 , 61, 2132-2134	3.4	60
97	Second-order nonlinear optical properties of N-(4-nitrophenyl)-(s)-prolinol-doped sol-gel-processed materials. <i>Chemistry of Materials</i> , 1992 , 4, 851-855	9.6	42
96	Synthesis and second-order nonlinear optical properties of polymethacrylates containing organic salt dye chromophore. <i>Chemistry of Materials</i> , 1992 , 4, 1253-1256	9.6	20
95	Study of third-order optical non-linearity and electrical conductivity of sol-gel processed silica: poly(2-bromo-5-methoxy-p-phenylene vinylene) composite. <i>Polymer</i> , 1992 , 33, 4145-4151	3.9	22
94	Nonlinear Optical Properties of Hierarchical Systems. <i>Materials Research Society Symposia Proceedings</i> , 1991 , 255, 247		2
93	Polymeric materials for non-linear optics and photonics. <i>Polymer</i> , 1991 , 32, 1746-1751	3.9	54
92	Third order non-linear optical properties of poly-p-phenylene benzobisthiazole and its novel composite with Zytel processed via methane sulphonic acid solution extrusion. <i>Polymer</i> , 1991 , 32, 1195-	. ₹1 99	31
91	Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: The study of soluble didecyloxy substituted polyphenyls. <i>Journal of Chemical Physics</i> , 1991 , 95, 3991-4001	3.9	45
90	Dispersion of linear and nonlinear optical properties of benzene: An ab initio time-dependent coupled-perturbed Hartree Bock study. <i>Journal of Chemical Physics</i> , 1991 , 95, 5873-5881	3.9	41
89	Nonlinear optical properties of p-nitroaniline: An ab initio time-dependent coupled perturbed HartreeBock study. <i>Journal of Chemical Physics</i> , 1991 , 94, 1171-1181	3.9	164
88	Third-Order Nonlinear Optical Effects in Molecular and Polymeric Materials. <i>ACS Symposium Series</i> , 1991 , 50-66	0.4	8
87	Third-order nonlinearity and two-photon-induced molecular dynamics: Femtosecond time-resolved transient absorption, Kerr gate, and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film. <i>Journal of Chemical Physics</i> , 1991 , 94, 5282-5290	3.9	107

86	Third-order optical nonlinearities of model compounds containing benzobisthiazole, benzobisoxazole, and benzbisimidazole units. <i>Chemistry of Materials</i> , 1991 , 3, 864-871	9.6	33
85	Sol-Gel Processed Inorganic and Organically Modified Composites for Nonlinear Optics and Photonics. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 180, 741		7
84	Large optical birefringence in poly(p-phenylene vinylene) films measured by optical waveguide techniques. <i>Polymer</i> , 1990 , 31, 627-630	3.9	32
83	Anisotropy of the linear and third-order nonlinear optical properties of a stretch-oriented polymer film of poly-[2, 5-dimethoxy paraphenylenevinylene]. <i>Applied Physics Letters</i> , 1990 , 56, 892-894	3.4	40
82	Photoinduced processes and resonant third-order nonlinearity in poly (3-dodecylthiophene) studied by femtosecond time resolved degenerate four wave mixing. <i>Journal of Chemical Physics</i> , 1990 , 93, 2201-2204	3.9	77
81	Stimulated Kerr scattering and reorientation work of molecules in liquid CS2. <i>Physical Review A</i> , 1990 , 41, 2687-2697	2.6	46
80	Theoretical and experimental studies of optical nonlinearities of haloforms CHX3, X=F, Cl, Br, I. <i>Journal of Chemical Physics</i> , 1990 , 92, 7418-7425	3.9	47
79	A novel nonlinear optical effect: Stimulated RamanKerr scattering in a benzene liquid-core fiber. <i>Journal of Chemical Physics</i> , 1990 , 93, 7647-7655	3.9	30
78	Resonant third-order nonlinear optical properties of poly(3-dodecylthiophene). <i>Journal of Chemical Physics</i> , 1990 , 92, 2756-2761	3.9	34
77	Stimulated rayleigh-kerr and raman-kerr scattering in a liquid-core hollow fiber system. <i>Fiber and Integrated Optics</i> , 1990 , 9, 11-26	0.8	10
76	Studies of third-order optical nonlinearities of model compounds containing benzothiazole, benzimidazole and benzoxazole units. <i>Chemistry of Materials</i> , 1990 , 2, 670-678	9.6	55
75	Dynamics of third-order nonlinear optical processes in Langmuir B lodgett and evaporated films of phthalocyanines. <i>Journal of Chemical Physics</i> , 1990 , 92, 2019-2024	3.9	122
74	Is there a role for organic materials chemistry in nonlinear optics and photonics?. <i>Chemistry of Materials</i> , 1990 , 2, 660-669	9.6	117
73	Dynamics of resonant third-order optical nonlinearity in perylene tetracarboxylic dianhydride studied by monitoring first- and second-order diffractions in subpicosecond degenerate four-wave mixing. <i>Journal of Chemical Physics</i> , 1989 , 91, 6643-6649	3.9	34
72	Picosecond degenerate four-wave mixing study of nonlinear optical properties of the poly-N-vinyl carbazole: 2,4,7-trinitrofluorenone composite polymer photoconductor. <i>Journal of Chemical Physics</i> , 1989 , 90, 5078-5081	3.9	16
71	A coupled anharmonic oscillator model for optical nonlinearities of conjugated organic structures. Journal of Chemical Physics, 1989 , 91, 2360-2365	3.9	18
70	Stimulated Rayleight-Kerr scattering in a CS2 liquid-core fiber system. <i>Optics Communications</i> , 1989 , 73, 161-164	2	18
69	Surface plasmon study of monolayer-bilayer transition in poly-4-BCMU and poly-3-BCMU polydiacetylene Langmuir-Blodgett films. <i>Langmuir</i> , 1989 , 5, 325-329	4	6

Multifunctional Molecular and Polymeric Materials for Nonlinear Optics and Photonics. *Materials Research Society Symposia Proceedings*, **1989**, 175, 79

67	The characterization of Langmuir-Blodgett films of a non-linear optical, side chain liquid crystalline polymer. <i>Thin Solid Films</i> , 1988 , 161, 315-324	2.2	23
66	Third-order non-linear optical properties of oriented films of poly(p-phenylene vinylene) investigated by femtosecond degenerate four wave mixing. <i>Polymer</i> , 1988 , 29, 1940-1942	3.9	83
65	Conductive and optically non-linear polymeric langmuir-blodgett films of poly(3-dodecylthiophene). <i>Synthetic Metals</i> , 1988 , 26, 369-381	3.6	118
64	A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers. <i>Journal of Chemical Physics</i> , 1988 , 89, 5535-5541	3.9	285
63	Nonlinear Optical Properties of Rigid Rod Polymers and Model Compounds. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 134, 635		
62	Dynamics of Solid-State Polymerization. ACS Symposium Series, 1987, 106-116	0.4	1
61	Picosecond time-resolved and frequency domain coherent Raman scattering study of conjugated polymeric films: A soluble polydiacetylene, poly-4-BCMU. <i>Journal of Chemical Physics</i> , 1987 , 87, 1882-18	86 ⁹	17
60	Third-Order Nonlinear Optical Effects in Organic Polymeric Films. <i>Materials Research Society Symposia Proceedings</i> , 1987 , 109, 271		5
59	Non-linear optical effects in thin organic polymeric films. <i>Thin Solid Films</i> , 1987 , 152, 275-294	2.2	34
58	Time-resolved studies of dynamics of triplet state spectral diffusion in the presence of both orientational and substitutional disorders: binary solid solutions of 1-bromo-4-chloronaphthalene and 1,4-dibromonaphthalene. <i>Chemical Physics</i> , 1986 , 101, 147-155	2.3	16
57	Structure of the iodine columns in iodinated nylon-6. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1986 , 24, 133-141	2.6	15
56	Degenerate four wave mixing study of conformational transition of a polydiacetylene, poly-4-BCMU, in solution. <i>Journal of Chemical Physics</i> , 1986 , 85, 1077-1080	3.9	3
55	Third-order nonlinear optical interaction and conformational transition in poly-4-BCMU polydiacetylene studied by picosecond and subpicosecond degenerate four wave mixing. <i>Journal of Chemical Physics</i> , 1986 , 84, 7049-7050	3.9	61
54	Picosecond transient grating studies of polymeric thin films. <i>Applied Physics Letters</i> , 1986 , 48, 387-389	3.4	3
53	Laser Raman optical-wave-guide study of mono- and multilayer Langmuir-Blodgett films of poly(diacetylenes) containing a carboxylic acid group. <i>Macromolecules</i> , 1986 , 19, 1059-1062	5.5	24
52	Third order nonlinear optical interactions in thin films of poly-p-phenylenebenzobisthiazole polymer investigated by picosecond and subpicosecond degenerate four wave mixing. <i>Applied Physics Letters</i> , 1986 , 48, 1187-1189	3.4	104
51	Novel application of the quartz crystal microbalance to study Langmuir-Blodgett films. <i>Langmuir</i> , 1986 , 2, 228-229	4	22

50	Study of poly[bis(p-toluene sulfonate) diacetylene] films prepared by a modification of the Langmuir B lodgett technique. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1985 , 23, 1523-1532		5
49	Polymerization of furil in the solid state by reaction with AsF5 at the solidgas interface. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1985 , 23, 2193-2201		
48	Infrared study of electrochemically prepared homo and mixed polymer films of azulene. <i>Synthetic Metals</i> , 1985 , 11, 293-304	3.6	9
47	Organic-thin-film-coated solar cells: Energy transfer between surface pyrene molecules and the silicon semiconductor substrate. <i>Solar Cells</i> , 1984 , 11, 401-409		4
46	Laser Raman investigation of drug-polymer conjugates: sulfathiazole-povidone coprecipitates. Journal of Pharmaceutical Sciences, 1984 , 73, 1849-51	3.9	9
45	Molecular mechanics of photopolymerization of 2,5-distyrylpyrazine in solid state. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1984 , 22, 1417-1429		1
44	An optically-pumped multigas Far-IR laser. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 1983 , 4, 15-19		3
43	Resonance energy transfer, motional narrowing, and vibrational dephasing in molecular crystals: 390 cm [®] internal vibration of naphthalene. <i>Journal of Chemical Physics</i> , 1983 , 78, 626-631	3.9	17
42	Two-photon excitation of Ho3+ in the CaF2, SrF2, and CdF2 lattices. <i>Physical Review B</i> , 1983 , 28, 20-23	3.3	20
41	Phonon echo in organic solids. <i>Journal of Chemical Physics</i> , 1983 , 78, 7500-7501	2.0	
,		3.9	
40	Dynamics of Reactions in molecular Solids. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 93, 25-39	3.9	11
			11 2
40	Dynamics of Reactions in molecular Solids. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 93, 25-39 Laser Raman Investigation of Solid State Rearrangement of bis(O-lodobenzoyl) peroxide into		
40	Dynamics of Reactions in molecular Solids. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 93, 25-39 Laser Raman Investigation of Solid State Rearrangement of bis(O-lodobenzoyl) peroxide into 1-(2Plodobenzoyloxy)-1, 2-benziodoxolin-3-one. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 100, 31-40 External heavy atom effect, excitonphonon coupling, and triplet energy transfer in a novel crystalline complex between naphthalene and 1,4-diiodotetrafluorobenzene. <i>Journal of Chemical</i>		2
4º 39 38	Dynamics of Reactions in molecular Solids. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 93, 25-39 Laser Raman Investigation of Solid State Rearrangement of bis(O-lodobenzoyl) peroxide into 1-(2Plodobenzoyloxy)-1, 2-benziodoxolin-3-one. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 100, 31-40 External heavy atom effect, excitonphonon coupling, and triplet energy transfer in a novel crystalline complex between naphthalene and 1,4-diiodotetrafluorobenzene. <i>Journal of Chemical Physics</i> , 1982 , 77, 1107-1113	3.9	5
40 39 38 37	Dynamics of Reactions in molecular Solids. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 93, 25-39 Laser Raman Investigation of Solid State Rearrangement of bis(O-lodobenzoyl) peroxide into 1-(2Plodobenzoyloxy)-1, 2-benziodoxolin-3-one. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 100, 31-40 External heavy atom effect, excitonBhonon coupling, and triplet energy transfer in a novel crystalline complex between naphthalene and 1,4-diiodotetrafluorobenzene. <i>Journal of Chemical Physics</i> , 1982 , 77, 1107-1113 Laser Raman Investigation of Solid State Reactions. <i>Applied Spectroscopy Reviews</i> , 1982 , 18, 59-103 Spectroscopic studies of the thermal rearrangement reaction of dimethyl 3,6-dichloro-2,5-dihydroxyterephthalate in the solid state. <i>Journal of the American Chemical Society</i> ,	3.9	259
40 39 38 37 36	Dynamics of Reactions in molecular Solids. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 93, 25-39 Laser Raman Investigation of Solid State Rearrangement of bis(O-lodobenzoyl) peroxide into 1-(2Plodobenzoyloxy)-1, 2-benziodoxolin-3-one. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 100, 31-40 External heavy atom effect, excitonphonon coupling, and triplet energy transfer in a novel crystalline complex between naphthalene and 1,4-diiodotetrafluorobenzene. <i>Journal of Chemical Physics</i> , 1982 , 77, 1107-1113 Laser Raman Investigation of Solid State Reactions. <i>Applied Spectroscopy Reviews</i> , 1982 , 18, 59-103 Spectroscopic studies of the thermal rearrangement reaction of dimethyl 3,6-dichloro-2,5-dihydroxyterephthalate in the solid state. <i>Journal of the American Chemical Society</i> , 1982 , 104, 6913-6918 Phonon spectroscopy of photochemical reactions in organic solids. <i>Chemical Physics Letters</i> , 1982 ,	3.9 4.5 16.4	2 5 9 8

32	Triplet excition emissions of octafluoronaphthalene crystalline complexes with naphthalene and durene. <i>Chemical Physics Letters</i> , 1980 , 72, 285-290	2.5	9
31	Vibrational Relaxation and Dephasing in Organic Solids. <i>Molecular Crystals and Liquid Crystals</i> , 1980 , 58, 39-54		13
30	Vibrational dephasing in organic solids: Temperature dependence of a Raman active localized internal mode of naphthalene. <i>Journal of Chemical Physics</i> , 1980 , 72, 573-579	3.9	49
29	Raman phonon spectroscopy of solid-state reactions: thermal rearrangement of methyl p-dimethylaminobenzenesulfonate in solid state. <i>Journal of the American Chemical Society</i> , 1980 , 102, 4254-4256	16.4	33
28	Dissolution behavior of 17 stradiol (E2) from povidone coprecipitates. comparison with microcrystalline and macrocrystalline E2. <i>International Journal of Pharmaceutics</i> , 1979 , 2, 113-123	6.5	11
27	Vibrational relaxation in a structurally disordered organic solid: Temperature dependence of Raman active phonons in p-bromochlorobenzene and p-dichlorobenzene. <i>Journal of Chemical Physics</i> , 1979 , 71, 4646-4651	3.9	15
26	Phase transitions in polyphenyls: Raman spectra of p-terphenyl and p-quaterphenyl in the solid state. <i>Chemical Physics</i> , 1978 , 35, 331-344	2.3	68
25	Phonon and exciton amalgamation - A criterion for true solid solutions: Vibrations of chemically and isotopically mixed para-dihalobenzene crystals. <i>Chemical Physics Letters</i> , 1978 , 54, 439-443	2.5	13
24	Molecular reorientations and intermolecular interactions: Raman spectra of the three crystalline phases of p-dichlorobenzene. <i>Journal of Raman Spectroscopy</i> , 1978 , 7, 316-320	2.3	3
23	Successive perturbation of phonon bands in an organic alloy. <i>Journal of Chemical Physics</i> , 1977 , 66, 625-	6 3 4	21
22	Chemical perturbation and lattice instability in molecular crystals. <i>Journal of Chemical Physics</i> , 1977 , 66, 862-867	3.9	20
21	Molecular motions and lattice stability of a disordered organic alloy: Binary solid solutions of 1,4-dihalonaphthalenes. <i>Journal of Chemical Physics</i> , 1977 , 67, 5802-5808	3.9	16
20	Intermolecular vibrations of a crystalline molecular complex. Journal of Chemical Physics, 1977, 66, 4341	-3 1344	10
19	Specificity in Chemical Perturbation of Crystal Structures. <i>Molecular Crystals and Liquid Crystals</i> , 1977 , 43, 175-181		1
18	Raman study of the metalThetal bonding in the molecules M2(CO)10-n(CNCH3)n(M = Mn, Re). Spectrochimica Acta Part A: Molecular Spectroscopy, 1977 , 33, 335-339		4
17	Raman spectroscopic investigation of interactions in a naphthalene: Octafluoronaphthalene crystalline complex. <i>Chemical Physics Letters</i> , 1977 , 47, 341-345	2.5	12
16	Phonon bands in a Electron charge-transfer complex. <i>Solid State Communications</i> , 1977 , 21, 871-873	1.6	6
15	Perturbed sites and host@uestflost exciton cascade in the biphenyl isotopic mixed crystal phosphorescence. <i>Chemical Physics</i> , 1976 , 13, 121-128	2.3	7

LIST OF PUBLICATIONS

14	Phonon bands in disordered systems with both mass and force constant defects: Isotopic mixed ice Ih. <i>Journal of Chemical Physics</i> , 1976 , 64, 3674-3678	3.9	8
13	Quantitative tests of mixed crystal excition theory. I. Naphthalene monomer1B2u and 3B1u spectra. <i>Chemical Physics</i> , 1974 , 6, 253-264	2.3	25
12	Spectroscopic evidence for a continuous change in molecular and crystal structure: deformation of biphenyl in the low temperature solid. <i>Chemical Physics Letters</i> , 1974 , 24, 15-17	2.5	67
11	External, internal and semi-internal vibrations in molecular solids: spectroscopic criteria for identification. <i>Chemical Physics Letters</i> , 1973 , 21, 505-510	2.5	20
10	TripletEriplet annihilation and excitonExciton interactions. Chemical Physics Letters, 1973, 20, 507-512	2.5	6
9	Phonon Raman spectra, molecular motions, and phase transitions of dimethylacetylene crystal. <i>Chemical Physics Letters</i> , 1973 , 20, 513-516	2.5	12
8	Molecular motions and Iphase transition: Raman and far-ir studies of neat and isotopic mixed hexamethylbenzene crystal. <i>Chemical Physics</i> , 1973 , 1, 173-181	2.3	16
7	Temperature dependence of a vibrational exciton: Some methyl motions of durene. <i>Journal of Chemical Physics</i> , 1973 , 58, 5031-5041	3.9	18
6	Vibrational, torsional, and librational excitons in molecular crystals: Raman spectra of neat and isotopic mixed durene. <i>Journal of Chemical Physics</i> , 1973 , 58, 126-134	3.9	31
5	Phonon Sidebands of Electronic Transitions in Molecular Crystals and Mixed Crystals. <i>Journal of Chemical Physics</i> , 1972 , 56, 2814-2823	3.9	89
4	Raman Phonon Spectra of Isotopic Mixed Naphthalene Crystals: Librational Exciton Model and the Amalgamation Limit. <i>Journal of Chemical Physics</i> , 1972 , 57, 863-865	3.9	41
3	Entire Phonon Spectrum of Molecular Crystals by the Localized Exciton Sideband Method: Naphthalene. <i>Journal of Chemical Physics</i> , 1972 , 57, 5409-5418	3.9	35
2	Method of Heavily Doped Isotopic Mixed Crystal for Determination of Exciton Splittings and Normal Modes: Raman Spectra of Naphthalene. <i>Journal of Chemical Physics</i> , 1972 , 57, 856-862	3.9	25
1	IDH1 Mutations Induce Organelle Defects Via Dysregulated Phospholipids		2