Nadia Mercader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2828558/publications.pdf Version: 2024-02-01

3

#	Article	IF	CITATIONS
1	Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nature Communications, 2022, 13, 1677.	5.8	17
2	Wt1 transcription factor impairs cardiomyocyte specification and drives a phenotypic switch from myocardium to epicardium. Development (Cambridge), 2022, 149, .	1.2	5
3	Diverse Signaling by TGFβ Isoforms in Response to Focal Injury is Associated with Either Retinal Regeneration or Reactive Gliosis. Cellular and Molecular Neurobiology, 2021, 41, 43-62.	1.7	20
4	A Systematic Analysis of Metal and Metalloid Concentrations in Eight Zebrafish Recirculating Water Systems. Zebrafish, 2021, 18, 252-264.	0.5	2
5	The TGFβ/Notch axis facilitates Müller cell-to-epithelial transition to ultimately form a chronic glial scar. Molecular Neurodegeneration, 2021, 16, 69.	4.4	18
6	Ventricular Cryoinjury as a Model to Study Heart Regeneration in Zebrafish. Methods in Molecular Biology, 2021, 2158, 51-62.	0.4	2
7	Reconstruction of Image Sequences From Ungated and Scanning-Aberrated Laser Scanning Microscopy Images of the Beating Heart. IEEE Transactions on Computational Imaging, 2020, 6, 385-395.	2.6	2
8	TGF-Î ² Signaling Promotes Tissue Formation during Cardiac Valve Regeneration in Adult Zebrafish. Developmental Cell, 2020, 52, 9-20.e7.	3.1	31
9	Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis. Cell Reports, 2020, 32, 107932.	2.9	13
10	Notch and Bmp signaling pathways act coordinately during the formation of the proepicardium. Developmental Dynamics, 2020, 249, 1455-1469.	0.8	8
11	Recent insights into zebrafish cardiac regeneration. Current Opinion in Genetics and Development, 2020, 64, 37-43.	1.5	17
12	Fisetin protects against cardiac cell death through reduction of ROS production and caspases activity. Scientific Reports, 2020, 10, 2896.	1.6	37
13	Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish. EMBO Reports, 2020, 21, e50287.	2.0	42
14	Analysis of wt1a reporter line expression levels during proepicardium formation in the zebrafish. Histology and Histopathology, 2020, 35, 1035-1046.	0.5	2
15	Wilms Tumor 1b Expression Defines a Pro-regenerative Macrophage Subtype and Is Required for Organ Regeneration in the Zebrafish. Cell Reports, 2019, 28, 1296-1306.e6.	2.9	61
16	Adult sox10+ Cardiomyocytes Contribute to Myocardial Regeneration in the Zebrafish. Cell Reports, 2019, 29, 1041-1054.e5.	2.9	29
17	Model systems for regeneration: zebrafish. Development (Cambridge), 2019, 146, .	1.2	139

18 Virtual High-Framerate Microscopy Of The Beating Heart Via Sorting Of Still Images., 2019,,.

NADIA MERCADER

#	Article	IF	CITATIONS
19	Actin dynamics and the Bmp pathway drive apical extrusion of proepicardial cells. Development (Cambridge), 2019, 146, .	1.2	16
20	Neuropilin 1 mediates epicardial activation and revascularization in the regenerating zebrafish heart. Development (Cambridge), 2019, 146, .	1.2	25
21	Retinal microglia signaling affects Müller cell behavior in the zebrafish following laser injury induction. Clia, 2019, 67, 1150-1166.	2.5	73
22	Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4188-4193.	3.3	144
23	Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. Nature Communications, 2018, 9, 428.	5.8	62
24	Elly Tanaka's passion for exploring animal regeneration. International Journal of Developmental Biology, 2018, 62, 387-391.	0.3	0
25	Can broken hearts be mended? Ken Poss, a pioneer on heart regeneration research. International Journal of Developmental Biology, 2018, 62, 383-386.	0.3	0
26	Models to crack the code of organ regeneration. International Journal of Developmental Biology, 2018, 62, 347-350.	0.3	0
27	High-throughput identification of small molecules that affect human embryonic vascular development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3022-E3031.	3.3	35
28	Store-Operated Ca2+ Entry as a Prostate Cancer Biomarker — a Riddle with Perspectives. Current Molecular Biology Reports, 2017, 3, 208-217.	0.8	14
29	A structural variant in the 5'-flanking region of the TWIST2 gene affects melanocyte development in belted cattle. PLoS ONE, 2017, 12, e0180170.	1.1	12
30	Mechanism of super-assembly of respiratory complexes III and IV. Nature, 2016, 539, 579-582.	13.7	157
31	Analysis of the dynamic co-expression network of heart regeneration in the zebrafish. Scientific Reports, 2016, 6, 26822.	1.6	32
32	2C-Cas9: a versatile tool for clonal analysis of gene function. Genome Research, 2016, 26, 681-692.	2.4	57
33	Interplay between cardiac function and heart development. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1707-1716.	1.9	89
34	Telomerase Is Essential for Zebrafish Heart Regeneration. Cell Reports, 2015, 12, 1691-1703.	2.9	67
35	The Epicardium in the Embryonic and Adult Zebrafish. Journal of Developmental Biology, 2014, 2, 101-116.	0.9	49
36	Transcriptional response to cardiac injury in the zebrafish: systematic identification of genes with highly concordant activity across in vivo models. BMC Genomics, 2014, 15, 852.	1.2	10

NADIA MERCADER

#	Article	IF	CITATIONS
37	Binary recombinase systems for high-resolution conditional mutagenesis. Nucleic Acids Research, 2014, 42, 3894-3907.	6.5	84
38	Use of Echocardiography Reveals Reestablishment of Ventricular Pumping Efficiency and Partial Ventricular Wall Motion Recovery upon Ventricular Cryoinjury in the Zebrafish. PLoS ONE, 2014, 9, e115604.	1.1	52
39	TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3. DMM Disease Models and Mechanisms, 2013, 6, 383-96.	1.2	45
40	Heartbeat-Driven Pericardiac Fluid Forces Contribute to Epicardium Morphogenesis. Current Biology, 2013, 23, 1726-1735.	1.8	68
41	The <i>osr1</i> and <i>osr2</i> genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of <i>wnt2b</i> to maintain pectoral fin development. Development (Cambridge), 2012, 139, 301-311.	1.2	31
42	Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nature Protocols, 2012, 7, 782-788.	5.5	107
43	Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Developmental Biology, 2012, 370, 173-186.	0.9	125
44	Epithelial-to-Mesenchymal and Endothelial-to-Mesenchymal Transition. Circulation, 2012, 125, 1795-1808.	1.6	348
45	Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development (Cambridge), 2011, 138, 1663-1674.	1.2	409
46	Ectopic Meis1 expression in the mouse limb bud alters P-D patterning in a Pbx1-independent manner. International Journal of Developmental Biology, 2009, 53, 1483-1494.	0.3	49
47	Early steps of paired fin development in zebrafish compared with tetrapod limb development. Development Growth and Differentiation, 2007, 49, 421-437.	0.6	83
48	Prdm1 acts downstream of a sequential RA, Wnt and Fgf signaling cascade during zebrafish forelimb induction. Development (Cambridge), 2006, 133, 2805-2815.	1.2	62
49	Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development (Cambridge), 2005, 132, 4131-4142.	1.2	131
50	The Ets Domain Transcription Factor Erm Distinguishes Rat Satellite Glia from Schwann Cells and Is Regulated in Satellite Cells by Neuregulin Signaling. Developmental Biology, 2000, 219, 44-58.	0.9	61
51	Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature, 1999, 402, 425-429.	13.7	295