Shugui Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2828425/publications.pdf Version: 2024-02-01

Снисин Ноц

#	Article	IF	CITATIONS
1	Spatial and temporal variations of total mercury in Antarctic snow along the transect from Zhongshan Station to Dome A. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 25152.	1.6	17
2	Ice-core based assessment of nitrogen deposition in the central Tibetan Plateau over the last millennium. Science of the Total Environment, 2022, 814, 152692.	8.0	6
3	Water vapor isotopes indicating rapid shift among multiple moisture sources for the 2018–2019 winter extreme precipitation events in southeastern China. Hydrology and Earth System Sciences, 2022, 26, 117-127.	4.9	9
4	Decadal Temperature Variations Over the Northwestern Tibetan Plateau Deduced From a 489‥ear Ice Core Stable Isotopic Record. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	1
5	Temporal variations of the contribution of combustion-derived water vapor to urban humidity during winter in Xi'an, China. Science of the Total Environment, 2022, 830, 154711.	8.0	2
6	The first detection of organophosphate esters (OPEs) of a high altitude fresh snowfall in the northeastern Tibetan Plateau. Science of the Total Environment, 2022, 838, 155615.	8.0	9
7	A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores. Cryosphere, 2022, 16, 1997-2008.	3.9	2
8	The Dominant Role of Brewerâ€Dobson Circulation on ¹⁷ Oâ€Excess Variations in Snow Pits at Dome A, Antarctica. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
9	A doubling of glacier mass loss in the Karlik Range, easternmost Tien Shan, between the periods 1972–2000 and 2000–2015. Journal of Glaciology, 2021, 67, 1-12.	2.2	16
10	Analysis of heavy metal-related indices in the Eboling permafrost on the Tibetan Plateau. Catena, 2021, 196, 104907.	5.0	8
11	Assessment of heavy metal contamination in the atmospheric deposition during 1950–2016 A.D. from a snow pit at Dome A, East Antarctica. Environmental Pollution, 2021, 268, 115848.	7.5	14
12	The atmospheric iron variations during 1950–2016 recorded in snow at Dome Argus, East Antarctica. Atmospheric Research, 2021, 248, 105263.	4.1	4
13	Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction. Cryosphere, 2021, 15, 1537-1550.	3.9	10
14	Spatial and temporal variations of fractionation of stable isotopes in East-Antarctic snow. Journal of Glaciology, 2021, 67, 523-532.	2.2	1
15	A Surging Glacier Recognized by Remote Sensing on the Zangser Kangri Ice Field, Central Tibetan Plateau. Remote Sensing, 2021, 13, 1220.	4.0	5
16	The Longâ€Term Cooling Trend in East Antarctic Plateau Over the Past 2000 Years Is Only Robust Between 550 and 1550 CE. Geophysical Research Letters, 2021, 48, e2021GL092923.	4.0	2
17	Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene. Cryosphere, 2021, 15, 2109-2114.	3.9	11
18	The AntSMB dataset: a comprehensive compilation of surface mass balance field observations over the Antarctic Ice Sheet. Earth System Science Data, 2021, 13, 3057-3074.	9.9	12

#	Article	IF	CITATIONS
19	Projecting Future Vegetation Change for Northeast China Using CMIP6 Model. Remote Sensing, 2021, 13, 3531.	4.0	11
20	On the performance of twentieth century reanalysis products for Antarctic snow accumulation. Climate Dynamics, 2020, 54, 435-455.	3.8	7
21	An assessment of natural and anthropogenic trace elements in the atmospheric deposition during 1776–2004 A.D. using the Miaoergou ice core, eastern Tien Shan, China. Atmospheric Environment, 2020, 221, 117112.	4.1	2
22	Variations of Stable Isotopic Composition in Atmospheric Water Vapor and their Controlling Factors—A 6‥ear Continuous Sampling Study in Nanjing, Eastern China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031697.	3.3	21
23	Temperature Trends in the Northwestern Tibetan Plateau Constrained by Ice Core Water Isotopes Over the Past 7,000 Years. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032560.	3.3	43
24	Robustness of the Recent Global Atmospheric Reanalyses for Antarctic Near-Surface Wind Speed Climatology. Journal of Climate, 2020, 33, 4027-4043.	3.2	45
25	An increase of ammonia emissions from terrestrial ecosystems on the Tibetan Plateau since 1980 deduced from ice core record. Environmental Pollution, 2020, 262, 114314.	7.5	10
26	Unstable relationships between tree ring Î′18O and climate variables over southwestern China: possible impacts from increasing central Pacific SSTs. Theoretical and Applied Climatology, 2019, 136, 391-402.	2.8	5
27	Apparent discrepancy of Tibetan ice core <i>l^</i> ¹⁸ O records may be attributed to misinterpretation of chronology. Cryosphere, 2019, 13, 1743-1752.	3.9	23
28	Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Science China Earth Sciences, 2019, 62, 1665-1701.	5.2	58
29	Normalized Difference Vegetation Indexâ€based assessment of climate change impact on vegetation growth in the humidâ€erid transition zone in northern China during 1982–2013. International Journal of Climatology, 2019, 39, 5583-5598.	3.5	19
30	Influence of Summer Sublimation on ÎƊ, δ‹sup>18‹/sup>O, and δ‹sup>17‹/sup>O in Precipitation, East Antarctica, and Implications for Climate Reconstruction From Ice Cores. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7339-7358.	3.3	20
31	Single particle mineralogy of microparticles from Himalayan ice-cores using SEM/EDX and ATR-FTIR imaging techniques for identification of volcanic ash signatures. Chemical Geology, 2019, 504, 205-215.	3.3	9
32	Dissolved iron concentration in the recent snow of the Lambert Glacial Basin, Antarctica. Atmospheric Environment, 2019, 196, 44-52.	4.1	10
33	How old are the Tibetan ice cores?. Chinese Science Bulletin, 2019, 64, 2425-2429.	0.7	3
34	Distribution of ARGs and MGEs among glacial soil, permafrost, and sediment using metagenomic analysis. Environmental Pollution, 2018, 234, 339-346.	7.5	69
35	Uranium record from a 3 m snow pit at Dome Argus, East Antarctica. PLoS ONE, 2018, 13, e0206598.	2.5	4
36	Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. Journal of Glaciology, 2018, 64, 624-636.	2.2	40

Sнисиі Hou

#	Article	IF	CITATIONS
37	The first luminescence dating of Tibetan glacier basal sediment. Cryosphere, 2018, 12, 163-168.	3.9	15
38	Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains. Cryosphere, 2018, 12, 2341-2348.	3.9	36
39	Diversity of Snow Bacteria from the Zangser Kangri Glacier in the Tibetan Plateau Environment. Geomicrobiology Journal, 2017, 34, 37-44.	2.0	3
40	Delayed warming hiatus over the Tibetan Plateau. Earth and Space Science, 2017, 4, 128-137.	2.6	23
41	A highâ€resolution atmospheric dust record for 1810–2004ÂA.D. derived from an ice core in eastern Tien Shan, central Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7505-7518.	3.3	15
42	Enhanced Recent Local Moisture Recycling on the Northwestern Tibetan Plateau Deduced From Ice Core Deuterium Excess Records. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,541.	3.3	39
43	^{239,240} Pu and ²³⁶ U records of an ice core from the eastern Tien Shan (Central Asia). Journal of Glaciology, 2017, 63, 929-935.	2.2	17
44	Snow Accumulation Variability Over the West Antarctic Ice Sheet Since 1900: A Comparison of Ice Core Records With ERAâ€20C Reanalysis. Geophysical Research Letters, 2017, 44, 11,482.	4.0	14
45	Impact of icebergs on net primary productivity inÂtheÂSouthernÂOcean. Cryosphere, 2017, 11, 707-722.	3.9	21
46	Significant recent warming over the northern Tibetan Plateau from ice core <i>l´</i> ¹⁸ O records. Climate of the Past, 2016, 12, 201-211.	3.4	15
47	Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records. Scientific Reports, 2016, 6, 32813.	3.3	23
48	High-resolution atmospheric cadmium record for AD 1776–2004 in a high-altitude ice core from the eastern Tien Shan, central Asia. Annals of Glaciology, 2016, 57, 265-272.	1.4	8
49	Variations in atmospheric dust loading since AD 1951 recorded in an ice core from the northern Tibetan Plateau. Annals of Glaciology, 2016, 57, 258-264.	1.4	10
50	Effects of ENSO on the major ion record of a Qomolangma (Mount Everest) ice core. Annals of Glaciology, 2016, 57, 282-288.	1.4	2
51	Persistent Pb Pollution in Central East Antarctic Snow: A Retrospective Assessment of Sources and Control Policy Implications. Environmental Science & Technology, 2016, 50, 12138-12145.	10.0	14
52	A 2680-year record of sea ice extent in the Ross Sea and the associated atmospheric circulation derived from the DT401 East Antarctic ice core. Science China Earth Sciences, 2015, 58, 2090-2102.	5.2	3
53	Effects of changes in moisture source and the upstream rainout on stable isotopes in precipitation – a case study in Nanjing, eastern China. Hydrology and Earth System Sciences, 2015, 19, 4293-4306.	4.9	60
54	Spatial distribution of 17O-excess in surface snow along a traverse from Zhongshan station to Dome A, East Antarctica. Earth and Planetary Science Letters, 2015, 414, 126-133.	4.4	33

#	Article	IF	CITATIONS
55	Preliminary Study on Effects of Glacial Retreat on the Dominant Glacial Snow Bacteria in Laohugou Glacier No. 12. Geomicrobiology Journal, 2015, 32, 113-118.	2.0	9
56	Recent surface mass balance from Syowa Station to Dome F, East Antarctica: comparison of field observations, atmospheric reanalyses, and a regional atmospheric climate model. Climate Dynamics, 2015, 45, 2885-2899.	3.8	12
57	Spatiotemporal variations of monocarboxylic acids in snow layers along a transect from Zhongshan Station to Dome A, eastern Antarctica. Atmospheric Research, 2015, 158-159, 79-87.	4.1	2
58	Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas. Cryosphere, 2014, 8, 289-301.	3.9	55
59	Spatial distribution of marine chemicals along a transect from Zhongshan Station to the Grove Mountain area, Eastern Antarctica. Science China Earth Sciences, 2014, 57, 2366-2373.	5.2	1
60	Temporal variations in marine chemical concentrations in coastal areas of eastern Antarctica and associated climatic causes. Quaternary International, 2014, 352, 16-25.	1.5	9
61	Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas. Science of the Total Environment, 2014, 487, 407-419.	8.0	10
62	Asian–Pacific Oscillation signal from a Qomolangma (Mount Everest) ice-core chemical record. Annals of Glaciology, 2014, 55, 121-128.	1.4	6
63	²¹⁰ Pb dating of the Miaoergou ice core from the eastern Tien Shan, China. Annals of Glaciology, 2014, 55, 105-110.	1.4	18
64	Snow accumulation and its moisture origin over Dome Argus, Antarctica. Climate Dynamics, 2013, 40, 731-742.	3.8	30
65	A review of climatic controls on δ ¹⁸ O in precipitation over the Tibetan Plateau: Observations and simulations. Reviews of Geophysics, 2013, 51, 525-548.	23.0	654
66	Climatology of stable isotopes in Antarctic snow and ice: Current status and prospects. Science Bulletin, 2013, 58, 1095-1106.	1.7	6
67	Factors controlling the nitrate in the DT-401 ice core in eastern Antarctica. Science China Earth Sciences, 2013, 56, 1531-1539.	5.2	4
68	A new Himalayan ice core CH ₄ record: possible hints at the preindustrial latitudinal gradient. Climate of the Past, 2013, 9, 2549-2554.	3.4	13
69	Sr-Nd isotope evidence for modern aeolian dust sources in mountain glaciers of western China. Journal of Glaciology, 2012, 58, 859-865.	2.2	41
70	Changes in ionic and oxygen isotopic composition of the snow-firn pack at Baishui Glacier No. 1, southeastern Tibetan Plateau. Environmental Earth Sciences, 2012, 67, 2345-2358.	2.7	6
71	Tree-ring Î′180 in southwestern China linked to variations in regional cloud cover and tropical sea surface temperature. Chemical Geology, 2012, 291, 104-115.	3.3	51
72	Atmospheric circulation change in the central Himalayas indicated by a high-resolution ice core deuterium excess record. Climate Research, 2012, 53, 1-12.	1.1	8

#	Article	IF	CITATIONS
73	Dating a 109.9 m ice core from Dome A (East Antarctica) with volcanic records and a firn densification model. Science China Earth Sciences, 2012, 55, 1280-1288.	5.2	7
74	Culturable bacteria isolated from snow cores along the 1300Âkm traverse from Zhongshan Station to Dome A, East Antarctica. Extremophiles, 2012, 16, 345-354.	2.3	11
75	High-resolution trace element records of an ice core from the eastern Tien Shan, central Asia, since 1953 AD. Journal of Geophysical Research, 2011, 116, .	3.3	49
76	lsotopic signatures for natural versus anthropogenic Pb in high-altitude Mt. Everest ice cores during the past 800years. Science of the Total Environment, 2011, 412-413, 194-202.	8.0	42
77	Combined tree-ring width and δ13C to reconstruct snowpack depth: a pilot study in the Gongga Mountain, west China. Theoretical and Applied Climatology, 2011, 103, 133-144.	2.8	14
78	Atmospheric pollution indicated by trace elements in snow from the northern slope of Cho Oyu range, Himalayas. Environmental Earth Sciences, 2011, 63, 311-320.	2.7	20
79	Spatial distribution of 10 m firn temperature in the Antarctic ice sheet. Science China Earth Sciences, 2011, 54, 655-666.	5.2	6
80	Abundance and community of snow bacteria from three glaciers in the Tibetan Plateau. Journal of Environmental Sciences, 2010, 22, 1418-1424.	6.1	38
81	A 108.83-m Ice-Core Record of Atmospheric Dust Deposition at Mt. Qomolangma (Everest), Central Himalaya. Quaternary Research, 2010, 73, 33-38.	1.7	45
82	Abundance and Diversity of Glacial Bacteria on the Tibetan Plateau with Environment. Geomicrobiology Journal, 2010, 27, 649-655.	2.0	8
83	A 2680 year volcanic record from the DTâ€401 East Antarctic ice core. Journal of Geophysical Research, 2010, 115, .	3.3	31
84	A generalized additive model for the spatial distribution of stable isotopic composition in Antarctic surface snow. Chemical Geology, 2010, 271, 133-141.	3.3	11
85	A new interpolation method for Antarctic surface temperature. Progress in Natural Science: Materials International, 2009, 19, 1843-1849.	4.4	12
86	An improved method for modeling spatial distribution of ÎD in surface snow over Antarctic ice sheet. Chinese Geographical Science, 2009, 19, 120-125.	3.0	1
87	Preliminary results of the close-off depth and the stable isotopic records along a 109.91 m ice core from Dome A, Antarctica. Science in China Series D: Earth Sciences, 2009, 52, 1502-1509.	0.9	14
88	New focuses of polar ice-core study: NEEM and Dome A. Science Bulletin, 2009, 54, 1009-1011.	9.0	10
89	Records of volcanic events since AD 1800 in the East Rongbuk ice core from Mt. Qomolangma. Science Bulletin, 2009, 54, 1411-1416.	9.0	7
90	Tracing the sources of particles in the East Rongbuk ice core from Mt. Qomolangma. Science Bulletin, 2009, 54, 1781-1785.	9.0	17

#	Article	IF	CITATIONS
91	Distribution of borehole temperature at four high-altitude alpine glaciers in Central Asia. Journal of Mountain Science, 2009, 6, 221-227.	2.0	19
92	An 800-Year Record of Atmospheric As, Mo, Sn, and Sb in Central Asia in High-Altitude Ice Cores from Mt. Qomolangma (Everest), Himalayas. Environmental Science & Technology, 2009, 43, 8060-8065.	10.0	82
93	Rare earth elements in an ice core from Mt. Everest: Seasonal variations and potential sources. Atmospheric Research, 2009, 94, 300-312.	4.1	34
94	A High-Resolution Record of Atmospheric Dust Composition and Variability since a.d. 1650 from a Mount Everest Ice Core. Journal of Climate, 2009, 22, 3910-3925.	3.2	53
95	Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350â€year Mount Everest ice core record. Journal of Geophysical Research, 2009, 114, .	3.3	65
96	A new spatial distribution map of <i>δ</i> ¹⁸ 0 in Antarctic surface snow. Geophysical Research Letters, 2009, 36, .	4.0	9
97	Glacier changes in the Karlik Shan, eastern Tien Shan, during 1971/72–2001/02. Annals of Glaciology, 2009, 50, 39-45.	1.4	52
98	Elemental composition in surface snow from the ultra-high elevation area of Mt. Qomolangma (Everest). Science Bulletin, 2008, 53, 289-294.	1.7	17
99	Preliminary evidence indicating Dome A (Antarctica) satisfying preconditions for drilling the oldest ice core. Science Bulletin, 2008, 53, 102-106.	1.7	45
100	Glacier extent and volume change (1966â^1⁄42000) on the Su-lo Mountain in northeastern Tibetan Plateau, China. Journal of Mountain Science, 2008, 5, 299-309.	2.0	16
101	Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Science of the Total Environment, 2008, 404, 171-181.	8.0	90
102	Snow accumulation rate on Qomolangma (Mount Everest), Himalaya: synchroneity with sites across the Tibetan Plateau on $50\hat{a}\in$ 100 year timescales. Journal of Glaciology, 2008, 54, 343-352.	2.2	96
103	Annual Accumulation in the Mt. Nyainqentanglha Ice Core, Southern Tibetan Plateau, China: Relationships To Atmospheric Circulation over Asia. Arctic, Antarctic, and Alpine Research, 2007, 39, 663-670.	1.1	28
104	Dust storm activity over the Tibetan Plateau recorded by a shallow ice core from the north slope of Mt. Qomolangma (Everest), Tibetâ€Himal region. Geophysical Research Letters, 2007, 34, .	4.0	34
105	Summer temperature trend over the past two millennia using air content in Himalayan ice. Climate of the Past, 2007, 3, 89-95.	3.4	26
106	Recent accumulation rate at Dome A, Antarctica. Science Bulletin, 2007, 52, 428-431.	1.7	65
107	Climatic significance of δ 18O records from an 80.36 m ice core in the East Rongbuk Glacier, Mount Qomolangma (Everest). Science in China Series D: Earth Sciences, 2005, 48, 266-272.	0.9	18
108	Glacier variations and climate warming and drying in the central Himalayas. Science Bulletin, 2004, 49, 65-69.	1.7	61

#	Article	IF	CITATIONS
109	Modern precipitation stable isotope vs. elevation gradients in the High Himalaya. Comment on "A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene―by David B. Rowley et al. [Earth Planet. Sci. Lett. 188 (2001) 253–268]. Earth and Planetary Science Letters, 2003, 209, 395-399.	4.4	24
110	Preliminary results from the chemical records of an 80.4 m ice core recovered from East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya. Annals of Glaciology, 2002, 35, 278-284.	1.4	51
111	Comparison of two ice-core chemical records recovered from the Qomolangma (Mount Everest) region, Himalaya. Annals of Glaciology, 2002, 35, 266-272.	1.4	14
112	Twentieth century increase of atmospheric ammonia recorded in Mount Everest ice core. Journal of Geophysical Research, 2002, 107, ACL 13-1-ACL 13-9.	3.3	52
113	The effect of postdepositional process on the chemical profiles of snow pits in the percolation zone. Cold Regions Science and Technology, 2002, 34, 111-116.	3.5	27
114	Recent change of the ice core accumulation rates on the Qinghai-Tibetan Plateau. Science Bulletin, 2002, 47, 1746-1749.	1.7	8
115	Recent change of the ice core accumulation rates on the Qing-hai-Tibetan Plateau. Science Bulletin, 2002, 47, 1746.	1.7	5
116	Re-examination on the climatological significance of the ice core δ180 records from No. 1 glacier at the head of Ürümqi River. Diqiu Huaxue, 2000, 19, 233-237.	0.5	0
117	Climatological significance of an ice core net-accumulation record at Mt. Qomolangma (Everest). Science Bulletin, 2000, 45, 259-264.	1.7	14
118	Effects of ion elution on formation of ice core record. Science Bulletin, 1997, 42, 236-239.	1.7	3
119	Texture of Polar Firn for Remote Sensing. Annals of Glaciology, 1987, 9, 1-4.	1.4	77