
Marta M Natile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/282804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial and Temporal Resolution of Luminescence Quenching in Small Upconversion Nanocrystals. ACS Applied Materials & Interfaces, 2022, 14, 11883-11894.	4.0	13
2	Large-Scale MOCVD Deposition of Nanostructured TiO2 on Stainless Steel Woven: A Systematic Investigation of Photoactivity as a Function of Film Thickness. Nanomaterials, 2022, 12, 992.	1.9	3
3	Decorating vertically aligned MoS2 nanoflakes with silver nanoparticles for inducing a bifunctional electrocatalyst towards oxygen evolution and oxygen reduction reaction. Nano Energy, 2021, 81, 105664.	8.2	46
4	Au nanoparticles supported on piranha etched halloysite nanotubes for highly efficient heterogeneous catalysis. Applied Surface Science, 2021, 546, 149100.	3.1	24
5	PEG-Neridronate-Modified NaYF ₄ :Gd ³⁺ ,Yb ³⁺ ,Tm ³⁺ /NaGdF ₄ Core–Shell Upconverting Nanoparticles for Bimodal Magnetic Resonance/Optical Luminescence Imaging, ACS Omega, 2021, 6, 14420-14429.	1.6	7
6	Microgels as Soluble Scaffolds for the Preparation of Noble Metal Nanoparticles Supported on Nanostructured Metal Oxides. ACS Applied Nano Materials, 2021, 4, 8343-8351.	2.4	4
7	Highly sensitive and selective detection of dimethylamine through Nb-doping of TiO2 nanotubes for potential use in seafood quality control. Sensors and Actuators B: Chemical, 2020, 303, 127217.	4.0	46
8	796 nm Activation of a Photocleavable Ruthenium(II) Complex Conjugated to an Upconverting Nanoparticle through Two Phosphonate Groups. Inorganic Chemistry, 2020, 59, 14807-14818.	1.9	23
9	In-Depth Study of ZnS Nanoparticle Surface Properties with a Combined Experimental and Theoretical Approach. Journal of Physical Chemistry C, 2020, 124, 7777-7789.	1.5	32
10	Er ³⁺ -to-dye energy transfer in DNA-coated core and core/shell/shell upconverting nanoparticles with 980 nm and 808 nm excitation of Yb ³⁺ and Nd ³⁺ . Analyst, The, 2020, 145, 2543-2553.	1.7	18
11	Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Applied Materials & amp; Interfaces, 2020, 12, 21070-21079.	4.0	62
12	NIR-Light-Driven Generation of Reactive Oxygen Species Using Ru(II)-Decorated Lipid-Encapsulated Upconverting Nanoparticles. Langmuir, 2019, 35, 12079-12090.	1.6	34
13	Investigation of Reduced Graphene Oxide and a Nb-Doped TiO ₂ Nanotube Hybrid Structure To Improve the Gas-Sensing Response and Selectivity. ACS Sensors, 2019, 4, 2094-2100.	4.0	47
14	Advanced Electrocatalysts for Hydrogen Evolution Reaction Based on Core–Shell MoS ₂ /TiO ₂ Nanostructures in Acidic and Alkaline Media. ACS Applied Energy Materials, 2019, 2, 2053-2062.	2.5	67
15	Ag ₂ S/MoS ₂ Nanocomposites Anchored on Reduced Graphene Oxide: Fast Interfacial Charge Transfer for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 22380-22389.	4.0	55
16	Synthesis and Development of Four Way Catalysts Starting from Critical Raw Material Free Perovskites: Influence of Doping and Synthesis Conditions. Topics in Catalysis, 2019, 62, 237-243.	1.3	7
17	Catalytic Mechanisms of NO Reduction in a CO–NO Atmosphere at Co- and Cu-Doped SrTiO ₃ (100) Surfaces. Journal of Physical Chemistry C, 2018, 122, 449-454.	1.5	28
18	Manganese Based Perovskites in Ethanol Steam Reforming. Catalysis Letters, 2018, 148, 220-226.	1.4	7

#	Article	IF	CITATIONS
19	Multicomponent Metal Oxide Nanostructures: Fabrication and Study of Core Issues to Improve Gas Sensing Performance. Proceedings (mdpi), 2018, 2, .	0.2	0
20	Reduced Graphene Oxide–TiO ₂ Nanotube Composite: Comprehensive Study for Gas-Sensing Applications. ACS Applied Nano Materials, 2018, 1, 7098-7105.	2.4	51
21	Small Copper Clusters Supported on SrTiO ₃ : An Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2018, 2018, 3829-3834.	1.0	6
22	Gold(III) Bis(di- <i>N</i> -heterocyclic carbene) Square Planar Trication with Axial Ligand Interactions with Bromides from Ag/Br Counteranion Assemblies. Organometallics, 2017, 36, 2285-2292.	1.1	11
23	Tin Dioxide Electrolyte-Gated Transistors Working in Depletion and Enhancement Modes. ACS Applied Materials & Interfaces, 2017, 9, 37013-37021.	4.0	17
24	Engineering of electronic and optical properties of PbS thin films via Cu doping. Superlattices and Microstructures, 2016, 97, 519-528.	1.4	26
25	Energetics of CO oxidation on lanthanide-free perovskite systems: the case of Co-doped SrTiO ₃ . Physical Chemistry Chemical Physics, 2016, 18, 33282-33286.	1.3	29
26	Photoactivation of Diiodido–Pt(IV) Complexes Coupled to Upconverting Nanoparticles. Molecular Pharmaceutics, 2016, 13, 2346-2362.	2.3	29
27	Adsorption of CO and formation of carbonates at steps of pure and Co-doped SrTiO3 surfaces by DFT calculations. Applied Surface Science, 2016, 364, 522-527.	3.1	21
28	A Player Often Neglected: Electrochemical Comprehensive Analysis of Counter Electrodes for Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7766-7776.	4.0	15
29	Largely Cu-doped LaCo1â^'Cu O3 perovskites for TWC: Toward new PGM-free catalysts. Applied Catalysis B: Environmental, 2016, 180, 94-105.	10.8	118
30	ZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells. Scientific Reports, 2015, 5, 14523.	1.6	54
31	Co ₃ O ₄ /TiO ₂ heterostructures obtained by hybrid method. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1588-1598.	0.8	2
32	Adsorption of small molecules at the cobalt-doped SrTiO3(001) surface: A first-principles investigation. Surface Science, 2015, 633, 68-76.	0.8	25
33	Phosphonium-based tetrakis dibenzoylmethane Eu(<scp>iii</scp>) and Sm(<scp>iii</scp>) complexes: synthesis, crystal structure and photoluminescence properties in a weakly coordinating phosphonium ionic liquid. RSC Advances, 2015, 5, 60898-60907.	1.7	22
34	Washcoating vs. direct synthesis of LaCoO 3 on monoliths for environmental applications. Applied Catalysis A: General, 2015, 499, 146-157.	2.2	31
35	Electrolyte-Gated WO ₃ Transistors: Electrochemistry, Structure, and Device Performance. Journal of Physical Chemistry C, 2015, 119, 21732-21738.	1.5	42
36	Graphene below the percolation threshold in TiO ₂ for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 2580-2588.	5.2	70

#	Article	IF	CITATIONS
37	Structural and photophysical properties of rare-earth complexes encapsulated into surface modified mesoporous silica nanoparticles. Dalton Transactions, 2014, 43, 16183-16196.	1.6	27
38	Sequential physical vapor deposition and chemical vapor deposition for the growth of In2O3–SnO2 radial and longitudinal heterojunctions. Applied Surface Science, 2014, 323, 59-64.	3.1	7
39	Coprecipitation of Oxalates: An Easy and Reproducible Wetâ€Chemistry Synthesis Route for Transitionâ€Metal Ferrites. European Journal of Inorganic Chemistry, 2014, 2014, 875-887.	1.0	30
40	Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films. Nanoscale, 2014, 6, 7004-7011.	2.8	81
41	Chemical Tuning versus Microstructure Features in Solid-State Gas Sensors: LaFe _{1-x} Ga _{<i>x</i>} O ₃ , a Case Study. Chemistry of Materials, 2014, 26, 1505-1513.	3.2	55
42	Co- and Cu-Doped Titanates: Toward a New Generation of Catalytic Converters. Catalysis Letters, 2014, 144, 1466-1471.	1.4	27
43	Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO 2. Applied Surface Science, 2014, 314, 919-930.	3.1	35
44	Hierarchical self-assembled Cu2S nanostructures: Fast and reproducible spray deposition of effective counter electrodes for high efficiency quantum dot solar cells. Nano Energy, 2014, 6, 200-210.	8.2	47
45	Electronic structure of SrTi1â~'xMxO3â~'δ (M=Co, Ni, Cu) perovskite-type doped-titanate crystals by DFT and DFT+U calculations. Chemical Physics Letters, 2013, 588, 102-108.	1.2	24
46	Spray-assisted silar deposition of cadmium sulphide quantum dots on metal oxide films for excitonic solar cells. Journal of Power Sources, 2013, 240, 736-744.	4.0	19
47	Steam reforming and oxidative steam reforming of methanol and ethanol: The behaviour of LaCo0.7Cu0.3O3. Applied Catalysis A: General, 2013, 453, 102-112.	2.2	54
48	Oxidative halogenation of dinuclear N-heterocyclic dicarbene gold(I) complexes. Journal of Organometallic Chemistry, 2013, 723, 108-114.	0.8	27
49	La0.7Sr0.3CuO3â~ʾÎ: An Interesting Catalyst for Methanol and Ethanol Treatment. Catalysis Letters, 2013, 143, 254-259.	1.4	6
50	Mixed Magnesium and Zinc Oxide Prepared by Co-precipitation and Analyzed by XPS. Surface Science Spectra, 2012, 19, 13-22.	0.3	3
51	Highly crystalline strontium ferrites SrFeO3â^Î^: an easy and effective wet-chemistry synthesis. Dalton Transactions, 2012, 41, 5517.	1.6	32
52	Coordination polymers based on trinuclear and mononuclear copper-pyrazolate building moieties connected by fumarate or 2-methylfumarate ions. Journal of Organometallic Chemistry, 2012, 714, 74-80.	0.8	21
53	Growth kinetics of CdSe quantum dots generated in polar polymers. Dalton Transactions, 2012, 41, 14354.	1.6	4
54	CuO/MgO Nanocomposites by Wet Impregnation: An XPS Study. Surface Science Spectra, 2012, 19, 23-29.	0.3	11

#	Article	IF	CITATIONS
55	Dinuclear N-Heterocyclic Dicarbene Gold Complexes in I–III and III–III Oxidation States: Synthesis and Structural Analysis. Organometallics, 2011, 30, 4607-4615.	1.1	49
56	CdSe Spherical Quantum Dots Stabilised by Thiomalic Acid: Biphasic Wet Synthesis and Characterisation. ChemPhysChem, 2011, 12, 863-870.	1.0	9
57	Single-Step Microwave-Assisted Synthesis of La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8& Perovskite. Nanoscience and Nanotechnology Letters, 2011, 3, 681-685.}	lt;/S bl@ >	O&lltSUB&g
58	Oxygen Permeation Measurements: An Alternative Tool to Select New Intermediate Temperature Solid Oxide Fuel Cell Cathodes. Nanoscience and Nanotechnology Letters, 2011, 3, 723-730.	0.4	3
59	Hybrid thermal-field emission of ZnO nanowires. Applied Physics Letters, 2011, 99, .	1.5	11
60	One pot synthesis of bi-linker stabilised CdSe quantum dots. Journal of Physics: Conference Series, 2010, 245, 012067.	0.3	3
61	Electronic properties of chelating dicarbene palladium complexes: A combined electrochemical, NMR and XPS investigation. Journal of Organometallic Chemistry, 2010, 695, 2359-2365.	0.8	43
62	La0.8Sr0.2Ga0.8Fe0.2O3â~δ: Influence of the preparation procedure on reactivity toward methanol and ethanol. Applied Catalysis B: Environmental, 2010, 97, 307-322.	10.8	28
63	ZnO/MgO Nanocomposites by Wet Impregnation: An XPS study. Surface Science Spectra, 2010, 17, 76-86.	0.3	2
64	Diblock and Triblock Fluorinated Copolymers: An ARXPS Study. Surface Science Spectra, 2010, 17, 102-114.	0.3	2
65	Au/CeO ₂ Supported Nanocatalysts: Interaction with Methanol. Nanoscience and Nanotechnology Letters, 2010, 2, 213-219.	0.4	5
66	CuO/CeO2 Nanocomposites: An XPS Study. Surface Science Spectra, 2009, 16, 13-26.	0.3	7
67	Ag/CeO2 Nanocomposites Obtained by Deposition-Precipitation, Studied by XPS. Surface Science Spectra, 2009, 16, 27-35.	0.3	1
68	ZnO / TiO 2 nanonetwork as efficient photoanode in excitonic solar cells. Applied Physics Letters, 2009, 95, .	1.5	39
69	Influence of Sr and Fe Dopants on the Surface Properties of LaGaO3. Surface Science Spectra, 2009, 16, 95-110.	0.3	0
70	LaMnO3: Influence of the Addition of Ba and Sr. Surface Science Spectra, 2009, 16, 83-94.	0.3	3
71	La2Cu0.8Co0.2O4+δ by Pechini Method. Surface Science Spectra, 2009, 16, 75-82.	0.3	3
72	La0.6Sr0.4Fe0.6Co0.2Cu0.2O3-ÎPowders by XPS. Surface Science Spectra, 2009, 16, 58-66.	0.3	0

#	Article	IF	CITATIONS
73	Au/CeO2 Powders: Influence of the Preparation Procedure, Studied by XPS. Surface Science Spectra, 2009, 16, 45-57.	0.3	0
74	CuOx/CeO2 Nanocomposites Prepared by Deposition-Precipitation: An XPS Study. Surface Science Spectra, 2009, 16, 36-44.	0.3	0
75	CeO ₂ /YSZ Nanocomposite Powders: Reactivity Towards CO Oxidation. Nanoscience and Nanotechnology Letters, 2009, 1, 73-76.	0.4	1
76	Facile and Reproducible Synthesis of Nanostructured Colloidal ZnO Nanoparticles from Zinc Acetylacetonate: Effect of Experimental Parameters and Mechanistic Investigations. European Journal of Inorganic Chemistry, 2009, 2009, 5017-5028.	1.0	40
77	Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance studies of octadecyl modified metal oxides obtained from different silane precursors. Journal of Chromatography A, 2009, 1216, 2345-2354.	1.8	12
78	Introduction to the Surface Spectra of Lanthanide-Based Materials. Surface Science Spectra, 2009, 16, i-ii.	0.3	1
79	Silica–zirconia mixed oxide samples by an hybrid materials based innovative preparation procedure: Influence of preparation procedure and composition on active sites. Journal of Non-Crystalline Solids, 2009, 355, 481-487.	1.5	6
80	PrMnO3 Prepared by the Citrate Gel Method, Studied by XPS. Surface Science Spectra, 2009, 16, 67-74.	0.3	13
81	Influence of the synthesis procedure on the properties and reactivity of nanostructured ceria powders. Applied Catalysis A: General, 2008, 339, 108-120.	2.2	47
82	LSCF and Fe2O3/LSCF powders: Interaction with methanol. Journal of Molecular Catalysis A, 2008, 282, 52-61.	4.8	9
83	La _{0.6} Sr _{0.4} Co _{1â^`<i>y</i>} Fe _{<i>y</i>} O _{3â^`δ} Perovskites: Influence of the Co/Fe Atomic Ratio on Properties and Catalytic Activity toward Alcohol Steam-Reforming. Chemistry of Materials, 2008, 20, 2314-2327.	3.2	117
84	CuxO/CeO2 Nanocomposites: Synthesis and Reactivity with NO. Materials Research Society Symposia Proceedings, 2008, 1074, 1.	0.1	0
85	From La2O3 To LaCoO3: XPS Analysis. Surface Science Spectra, 2008, 15, 1-13.	0.3	22
86	CuO/La0.6Sr0.4Co0.2Fe0.8O3-Ĩ Powder by XPS. Surface Science Spectra, 2008, 15, 14-22.	0.3	1
87	La0.6Sr0.4Co1-yFeyO3-δ Powders Studied by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2008, 15, 41-58.	0.3	0
88	Effect of the Preparation Procedure on the Surface Properties of Nanosized Ceria Powders. Surface Science Spectra, 2007, 14, 8-18.	0.3	0
89	LaSrCoFeO and Fe2O3/LaSrCoFeO Powders:Â Synthesis and Characterization. Chemistry of Materials, 2007, 19, 2796-2808.	3.2	49
90	LaCoO3: Effect of synthesis conditions on properties and reactivity. Applied Catalysis B: Environmental, 2007, 72, 351-362.	10.8	140

#	Article	IF	CITATIONS
91	WO3/CeO2Nanocomposite Powders:Â Synthesis, Characterization, and Reactivity. Chemistry of Materials, 2006, 18, 3270-3280.	3.2	35
92	Nanostructured CeO2 Powders by XPS. Surface Science Spectra, 2006, 13, 17-30.	0.3	27
93	Nanostructured Oxide-Based Powders:Â Investigation of the Growth Mode of the CeO2Clusters on the YSZ Surface. Journal of Physical Chemistry B, 2006, 110, 2515-2521.	1.2	24
94	La0.6Sr0.4Co0.8Fe0.2O3-δ and Fe2O3/La0.6Sr0.4Co0.8Fe0.2O3-δ Powders: XPS Characterization. Surface Science Spectra, 2006, 13, 31-47.	0.3	6
95	WO3/CeO2/YSZ nanocomposite as a potential catalyst for methanol reforming. Journal of Power Sources, 2005, 145, 644-651.	4.0	3
96	Experimental and QM/MM investigation of the hydrated silica surface reactivity. Chemical Physics Letters, 2005, 405, 459-464.	1.2	10
97	Influence of preparation technique and iron doping on the structure and reactivity of mixed Fe–Ti–O nanocomposites. Materials Chemistry and Physics, 2005, 92, 394-402.	2.0	9
98	Properties and Reactivity of Nanostructured CeO2 Powders:  Comparison among Two Synthesis Procedures. Chemistry of Materials, 2005, 17, 6272-6286.	3.2	122
99	CoOx/CeO2Nanocomposite Powders:Â Synthesis, Characterization, and Reactivity. Chemistry of Materials, 2005, 17, 3403-3414.	3.2	89
100	Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface. Applied Catalysis B: Environmental, 2004, 48, 267-274.	10.8	201
101	Surface reactivity of NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts: interaction with methanol. Journal of Molecular Catalysis A, 2004, 217, 175-184.	4.8	26
102	New NiO/Co3O4 and Fe2O3/Co3O4 Nanocomposite Catalysts: Synthesis and Characterization ChemInform, 2003, 34, no.	0.1	0
103	New NiO/Co3O4 and Fe2O3/Co3O4 Nanocomposite Catalysts:  Synthesis and Characterization. Chemistry of Materials, 2003, 15, 2502-2510.	3.2	104
104	Study of Surface Reactivity of Cobalt Oxides:Â Interaction with Methanol. Chemistry of Materials, 2002, 14, 3090-3099.	3.2	166
105	Surface Reactivity of NiO:Â Interaction with Methanol. Chemistry of Materials, 2002, 14, 4895-4903.	3.2	66