List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/282785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of voltage and gap distance on the dynamics of the ionization front, plasma dots, produced by nanosecond pulsed discharges at water surface. Plasma Sources Science and Technology, 2022, 31, 045006.	3.1	9
2	Production of SiC Nanoparticles in Carbon Network by Pulsed Electrical Discharges in Liquid Hexamethyldisilazane with Gaseous Bubbles. Plasma Chemistry and Plasma Processing, 2022, 42, 605.	2.4	1
3	AC Discharges in Contact With Water Solutions of Varying Electrical Conductivity: Characterization of Electrical and Optical Properties. IEEE Transactions on Plasma Science, 2022, 50, 2215-2224.	1.3	2
4	Statistical analysis of pulsed spark discharges in water: Effects of gap distance, electrode material, and voltage polarity on discharge characteristics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	2.1	3
5	Selective Synthesis of 2D Mesoporous CuO Agglomerates by Pulsed Spark Discharge in Water. Plasma Chemistry and Plasma Processing, 2021, 41, 433-445.	2.4	8
6	Transformation of <i>n</i> -heptane using an in-liquid submerged microwave plasma jet of argon. Journal of Applied Physics, 2021, 129, .	2.5	7
7	Synthesis of nickel and cobalt oxide nanoparticles by pulsed underwater spark discharges. Journal of Applied Physics, 2021, 129, .	2.5	23
8	Atomic scale microscopy unveils the growth mechanism of 2D-like CuO nanoparticle agglomerates produced via electrical discharges in water. Materials Chemistry and Physics, 2021, 261, 124244.	4.0	7
9	Dynamics of a pulsed negative nanosecond discharge on water surface and comparison with the positive discharge. Journal of Physics Communications, 2021, 5, 035005.	1.2	9
10	Scenario of carbonâ€encapsulated particle synthesis by spark discharges in liquid hydrocarbons. Plasma Processes and Polymers, 2021, 18, 2100013.	3.0	2
11	Synthesis of core–shell copper–graphite submicronic particles and carbon nano-onions by spark discharges in liquid hydrocarbons. Scientific Reports, 2021, 11, 7516.	3.3	9
12	Electrical and optical characterization of a pulsed discharge in immiscible layered liquids: n-heptane and water with various electrical conductivities. Plasma Sources Science and Technology, 2021, 30, 055021.	3.1	5
13	Spark discharges in liquid heptane in contact with silver nitrate solution: Investigation of the synthesized particles. Plasma Processes and Polymers, 2021, 18, 2100083.	3.0	5
14	Synthesis of Silicon and Silicon Carbide Nanoparticles by Pulsed Electrical Discharges in Dielectric Liquids. Plasma Chemistry and Plasma Processing, 2021, 41, 1647-1660.	2.4	7
15	Statistical analysis of pulsed discharges in dielectric liquid: effects of voltage amplitude, pulse width, electrode configuration, and liquid composition. Journal Physics D: Applied Physics, 2021, 54, 485201.	2.8	5
16	Influence of electrodes nature on the electrical characteristics of spark discharges in water. , 2021, , .		1
17	Pulsed Spark Discharge in Deionized Water for Nanoparticle Synthesis: Electrical Measurement and Cavitation Bubble Study. , 2021, , .		0
18	Microwave Plasma Jet in Water: Effect of Water Electrical Conductivity on Plasma Characteristics. Plasma Chemistry and Plasma Processing, 2020, 40, 169-185.	2.4	21

#	Article	IF	CITATIONS
19	Characterization of a microwave plasma jet (TIAGO) in ontact with water: Application in degradation of methylene blue dye. Plasma Processes and Polymers, 2020, 17, 1900157.	3.0	10
20	Electrical characterization of positive and negative pulsed nanosecond discharges in water coupled with time-resolved light detection. Journal of Applied Physics, 2020, 128, 033304.	2.5	13
21	Synthesis of Copper and Copper Oxide Nanomaterials by Pulsed Electric Field in Water with Various Electrical Conductivities. Nanomaterials, 2020, 10, 1347.	4.1	8
22	Simplified Spark Pulser for Nanoparticles Generation. IEEE Transactions on Plasma Science, 2020, 48, 3656-3662.	1.3	1
23	Determination of the Electrical Circuit Equivalent to a Pulsed Discharge in Water: Assessment of the Temporal Evolution of Electron Density and Temperature. IEEE Transactions on Plasma Science, 2020, 48, 3193-3202.	1.3	10
24	Pulsed nanosecond air discharge in contact with water: influence of voltage polarity, amplitude, pulse width, and gap distance. Journal Physics D: Applied Physics, 2020, 53, 355202.	2.8	13
25	Time and space-resolved imaging of an AC air discharge in contact with water. Journal Physics D: Applied Physics, 2020, 53, 425209.	2.8	13
26	Synthesis of copper and copper oxide nanomaterials by electrical discharges in water with various electrical conductivities. Journal of Applied Physics, 2020, 127, .	2.5	21
27	Time-resolved imaging of pulsed positive nanosecond discharge on water surface: plasma dots guided by water surface. Plasma Sources Science and Technology, 2020, 29, 115017.	3.1	13
28	Characterization of Various Air Plasma Discharge Modes in Contact with Water and Their Effect on the Degradation of Reactive Dyes. Plasma Chemistry and Plasma Processing, 2019, 39, 1483-1498.	2.4	18
29	Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen. Particuology, 2018, 40, 152-159.	3.6	22
30	In-liquid arc plasma jet and its application to phenol degradation. Journal Physics D: Applied Physics, 2018, 51, 114005.	2.8	18
31	Microwave Plasma Jet in Water: Characterization and Feasibility to Wastewater Treatment. Plasma Chemistry and Plasma Processing, 2018, 38, 1003-1020.	2.4	25
32	Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water. Journal Physics D: Applied Physics, 2018, 51, 244003.	2.8	12
33	Synthesis of Carbon–Metal Multi-Strand Nanocomposites by Discharges in Heptane Between Two Metallic Electrodes. Plasma Chemistry and Plasma Processing, 2017, 37, 1069-1090.	2.4	4
34	The effect of electrical conductivity on nanosecond discharges in distilled water and in methanol with argon bubbles. Journal Physics D: Applied Physics, 2017, 50, 185207.	2.8	22
35	Space and time structure of helium pulsed surface-wave discharges at intermediate pressures (5–50) Tj ETQ	q1 1 0.7843 3.1	814 ₄ rgBT /Ov
36	Synthesis of SiOC:H nanoparticles by electrical discharge in hexamethyldisilazane and water. Plasma	3.0	10

Processes and Polymers, 2017, 14, 1700089.

#	Article	IF	CITATIONS
37	Characterization by laser-induced photodetachment of anions formed during dust particle growth in a magnetically confined very low-pressure argon–acetylene plasma. Plasma Sources Science and Technology, 2017, 26, 085001.	3.1	2
38	Nanoparticle synthesis by high-density plasma sustained in liquid organosilicon precursors. Journal of Applied Physics, 2017, 122, .	2.5	4
39	Low-dielectric layer increases nanosecond electric discharges in distilled water. AIP Advances, 2016, 6, 105112.	1.3	8
40	The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water. Journal Physics D: Applied Physics, 2016, 49, 245203.	2.8	32
41	Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition. IEEE Transactions on Plasma Science, 2016, 44, 2988-2994.	1.3	10
42	Synthesis of amorphous hydrogenated carbon thin films by magnetized radio-frequency discharge in argon–acetylene mixture at very low gas pressure. Thin Solid Films, 2016, 599, 84-97.	1.8	1
43	Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure. AIP Advances, 2015, 5, 117136.	1.3	5
44	Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas. AIP Advances, 2015, 5, .	1.3	27
45	Characterization of helium surface-wave plasmas at intermediate pressures (5–50 Torr): temperatures and density of metastable atoms in the 2 ³ s level. Journal Physics D: Applied Physics, 2015, 48, 035202.	2.8	2
46	Ignition modes of nanosecond discharge with bubbles in distilled water. Journal Physics D: Applied Physics, 2015, 48, 405206.	2.8	34
47	Time-resolved imaging of nanosecond-pulsed micro-discharges in heptane. Journal Physics D: Applied Physics, 2014, 47, 055203.	2.8	22
48	Microdischarge Ignition in Liquid Heptane. IEEE Transactions on Plasma Science, 2014, 42, 2616-2617.	1.3	4
49	Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis. Journal Physics D: Applied Physics, 2014, 47, 224016.	2.8	66
50	Synthesis of carbon fibres by electrical discharges in heptane. Materials Letters, 2014, 135, 115-118.	2.6	4
51	Comparison of Aluminium Nanostructures Created by Discharges in Various Dielectric Liquids. Plasma Chemistry and Plasma Processing, 2014, 34, 1101-1114.	2.4	29
52	Combined SIMS and AFM study of complex structures of streamers on metallic multilayers. Surface and Interface Analysis, 2014, 46, 397-400.	1.8	4
53	Dynamics of bubbles created by plasma in heptane for micro-gap conditions. Journal of the Acoustical Society of America, 2013, 134, 991-1000.	1.1	17
54	Plasma-surface interaction in heptane. Journal of Applied Physics, 2013, 113, 213303.	2.5	16

#	Article	IF	CITATIONS
55	Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Materials Chemistry and Physics, 2013, 142, 199-206.	4.0	26
56	Interaction of micro-discharges in heptane with metallic multi-layers. Applied Surface Science, 2013, 274, 378-391.	6.1	8
57	Impacts created on various materials by micro-discharges in heptane: Influence of the dissipated charge. Journal of Applied Physics, 2013, 113, .	2.5	28
58	Interaction of Discharges in Heptane with Silicon Covered by a Carpet of Carbon Nanotubes. Advanced Engineering Materials, 2013, 15, 885-892.	3.5	4
59	Investigations on AlN/sapphire piezoelectric bilayer structure for high-temperature SAW applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 999-1005.	3.0	64
60	Reliability of AlN/sapphire bilayer structure for high-temperature SAW applications. , 2010, , .		7
61	Streamer-Surface Interaction in Heptane with Micro-Gaps. Advanced Materials Research, 0, 324, 89-92.	0.3	7