Yasuhiro Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2827446/publications.pdf

Version: 2024-02-01

61857 69108 6,477 95 43 77 citations h-index g-index papers 97 97 97 9104 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Specification of tissue-resident macrophages during organogenesis. Science, 2016, 353, .	6.0	609
2	Protein Expression and Functional Difference of Membrane-Bound and Soluble Receptor Activator of NF-κB Ligand: Modulation of the Expression by Osteotropic Factors and Cytokines. Biochemical and Biophysical Research Communications, 2000, 275, 768-775.	1.0	457
3	Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nature Medicine, 2012, 18, 405-412.	15.2	417
4	Osteoclast differentiation by RANKL and OPG signaling pathways. Journal of Bone and Mineral Metabolism, 2021, 39, 19-26.	1.3	293
5	The Regulation of Bone Metabolism and Disorders by Wnt Signaling. International Journal of Molecular Sciences, 2019, 20, 5525.	1.8	214
6	DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine–producing metabolic pathway. Nature Medicine, 2015, 21, 281-287.	15.2	190
7	Osteoprotegerin Regulates Bone Formation through a Coupling Mechanism with Bone Resorption. Endocrinology, 2003, 144, 5441-5449.	1.4	172
8	Regulation of bone metabolism by Wnt signals. Journal of Biochemistry, 2016, 159, 387-392.	0.9	167
9	Identification of cell cycle–arrested quiescent osteoclast precursors in vivo. Journal of Cell Biology, 2009, 184, 541-554.	2.3	144
10	Action of RANKL and OPG for Osteoclastogenesis. Critical Reviews in Eukaryotic Gene Expression, 2009, 19, 61-72.	0.4	137
11	Study of immunoelectron microscopic localization of cathepsin K in osteoclasts and other bone cells in the mouse femur. Bone, 1998, 23, 499-509.	1.4	124
12	Noncanonical Wnt5a enhances Wnt/ \hat{l}^2 -catenin signaling during osteoblastogenesis. Scientific Reports, 2014, 4, 4493.	1.6	124
13	MyD88 But Not TRIF Is Essential for Osteoclastogenesis Induced by Lipopolysaccharide, Diacyl Lipopeptide, and IL-1α. Journal of Experimental Medicine, 2004, 200, 601-611.	4.2	122
14	Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Noncanonical cAMP/PKA Pathways. Journal of Bone and Mineral Research, 2016, 31, 65-75.	3.1	119
15	Force-Induced Osteoclast Apoptosis In Vivo Is Accompanied by Elevation in Transforming Growth Factor \hat{l}^2 and Osteoprotegerin Expression. Journal of Bone and Mineral Research, 2000, 15, 1924-1934.	3.1	111
16	Prostaglandin E2 Enhances Osteoclastic Differentiation of Precursor Cells through Protein Kinase A-dependent Phosphorylation of TAK1. Journal of Biological Chemistry, 2005, 280, 11395-11403.	1.6	108
17	Regulatory Mechanism of Osteoclastogenesis by RANKL and Wnt Signals. Frontiers in Bioscience - Landmark, 2011, 16, 21.	3.0	101
18	Fluorescence Microscopic Demonstration of Cathepsin K Activity as the Major Lysosomal Cysteine Proteinase in Osteoclasts. Journal of Biochemistry, 1998, 123, 752-759.	0.9	100

#	Article	IF	Citations
19	Acid Attack and Cathepsin K in Bone Resorption Around Total Hip Replacement Prosthesis. Journal of Bone and Mineral Research, 2001, 16, 1780-1786.	3.1	95
20	Roles of Wnt signals in bone resorption during physiological and pathological states. Journal of Molecular Medicine, 2013, 91, 15-23.	1.7	94
21	Lineage-committed osteoclast precursors circulate in blood and settle down into bone. Journal of Bone and Mineral Research, 2011, 26, 2978-2990.	3.1	92
22	Systemic Circulation and Bone Recruitment of Osteoclast Precursors Tracked by Using Fluorescent Imaging Techniques. Journal of Immunology, 2013, 190, 605-612.	0.4	86
23	c-Fos plays an essential role in the up-regulation of RANK expression in osteoclast precursors within the bone microenvironment. Journal of Cell Science, 2012, 125, 2910-7.	1.2	84
24	Administration of osteocalcin accelerates orthodontic tooth movement induced by a closed coil spring in rats. European Journal of Orthodontics, 2001, 23, 535-545.	1.1	82
25	Multiwalled Carbon Nanotubes Specifically Inhibit Osteoclast Differentiation and Function. Nano Letters, 2009, 9, 1406-1413.	4.5	82
26	Daily administration of eldecalcitol (ED-71), an active vitamin D analog, increases bone mineral density by suppressing RANKL expression in mouse trabecular bone. Journal of Bone and Mineral Research, 2012, 27, 461-473.	3.1	82
27	Prostaglandin E2 Strongly Inhibits Human Osteoclast Formation. Endocrinology, 2005, 146, 5204-5214.	1.4	81
28	p38 Mitogen-Activated Protein Kinase Is Crucially Involved in Osteoclast Differentiation But Not in Cytokine Production, Phagocytosis, or Dendritic Cell Differentiation of Bone Marrow Macrophages. Endocrinology, 2003, 144, 4999-5005.	1.4	79
29	Muramyl Dipeptide Enhances Osteoclast Formation Induced by Lipopolysaccharide, IL-1α, and TNF-α through Nucleotide-Binding Oligomerization Domain 2-Mediated Signaling in Osteoblasts. Journal of Immunology, 2005, 175, 1956-1964.	0.4	74
30	The Tumor Necrosis Factor Superfamily Member RANKL Suppresses Effector Cytokine Production in Group 3 Innate Lymphoid Cells. Immunity, 2018, 48, 1208-1219.e4.	6.6	70
31	A Jak 1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE, 2017, 12, e0181126.	1.1	68
32	Spleen serves as a reservoir of osteoclast precursors through vitamin D-induced IL-34 expression in osteopetrotic $\langle i \rangle op/op \langle i \rangle$ mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10006-10011.	3.3	66
33	Carbon Nanotubes Induce Bone Calcification by Bidirectional Interaction with Osteoblasts. Advanced Materials, 2012, 24, 2176-2185.	11.1	63
34	Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Science Signaling, 2017, 10 , .	1.6	60
35	Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nature Metabolism, 2020, 2, 1382-1390.	5.1	60
36	Generation of Osteoclasts In Vitro, and Assay of Osteoclast Activity. Methods in Molecular Medicine, 2007, 135, 285-301.	0.8	59

#	Article	IF	Citations
37	Bone Formation Is Coupled to Resorption Via Suppression of Sclerostin Expression by Osteoclasts. Journal of Bone and Mineral Research, 2017, 32, 2074-2086.	3.1	55
38	Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nature Communications, 2020, 11, 4549.	5.8	54
39	Effects of local administration of osteocalcin on experimental tooth movement. Angle Orthodontist, 1998, 68, 259-66.	1.1	53
40	Force-induced Rapid Changes in Cell Fate at Midpalatal Suture Cartilage of Growing Rats. Journal of Dental Research, 1999, 78, 1495-1504.	2.5	51
41	Osteoprotegerin-Deficient Male Mice as a Model for Severe Alveolar Bone Loss: Comparison With RANKL-Overexpressing Transgenic Male Mice. Endocrinology, 2013, 154, 773-782.	1.4	48
42	Alisol-B, a novel phyto-steroid, suppresses the RANKL-induced osteoclast formation and prevents bone loss in mice. Biochemical Pharmacology, 2010, 80, 352-361.	2.0	47
43	The regulation of osteoclast differentiation by Wnt signals. BoneKEy Reports, 2015, 4, 713.	2.7	47
44	Cell Adhesion Is a Prerequisite for Osteoclast Survival. Biochemical and Biophysical Research Communications, 2000, 270, 550-556.	1.0	43
45	Roles of Wnt signaling in bone formation and resorption. Japanese Dental Science Review, 2008, 44, 76-82.	2.0	43
46	Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator. Journal of Experimental Medicine, 2016, 213, 1441-1458.	4.2	41
47	Osteoprotegerin Reduces the Serum Level of Receptor Activator of NF-κB Ligand Derived from Osteoblasts. Journal of Immunology, 2007, 178, 192-200.	0.4	40
48	Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a. Biochemical and Biophysical Research Communications, 2015, 463, 1278-1283.	1.0	39
49	The HIV co-receptor CCR5 regulates osteoclast function. Nature Communications, 2017, 8, 2226.	5.8	39
50	Osteogenic Factor Runx2 Marks a Subset of Leptin Receptor-Positive Cells that Sit Atop the Bone Marrow Stromal Cell Hierarchy. Scientific Reports, 2017, 7, 4928.	1.6	38
51	A Common Downstream Signaling Activity of Osteoclast Survival Factors That Prevent Nitric Oxide-Promoted Osteoclast Apoptosis ¹ . Endocrinology, 2000, 141, 2995-3005.	1.4	37
52	Diphenylhydantoin Inhibits Osteoclast Differentiation and Function Through Suppression of NFATc1 Signaling. Journal of Bone and Mineral Research, 2009, 24, 1469-1480.	3.1	36
53	Tetracyclines Convert the Osteoclastic-Differentiation Pathway of Progenitor Cells To Produce Dendritic Cell-like Cells. Journal of Immunology, 2012, 188, 1772-1781.	0.4	36
54	Parathyroid Hormone Shifts Cell Fate of a Leptin Receptor-Marked Stromal Population from Adipogenic to Osteoblastic Lineage. Journal of Bone and Mineral Research, 2019, 34, 1952-1963.	3.1	35

#	Article	IF	CITATIONS
55	WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25697-25706.	3.3	35
56	Prostaglandin E2 Receptors EP2 and EP4 Are Down-regulated during Differentiation of Mouse Osteoclasts from Their Precursors. Journal of Biological Chemistry, 2005, 280, 24035-24042.	1.6	32
57	Regulatory mechanisms of sclerostin expression during bone remodeling. Journal of Bone and Mineral Metabolism, 2019, 37, 9-17.	1.3	32
58	Bisphosphonate administration alters subcellular localization of vacuolar-type H+-ATPase and cathepsin K in osteoclasts during experimental movement of rat molars. The Anatomical Record, 2000, 260, 72-80.	2.3	31
59	Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. PLoS ONE, 2017, 12, e0184904.	1.1	31
60	Stability of mRNA influences osteoporotic bone mass via CNOT3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2692-2697.	3.3	29
61	Roles of cathelicidinâ€related antimicrobial peptide in murine osteoclastogenesis. Immunology, 2013, 140, 344-351.	2.0	28
62	Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts. Cellular and Molecular Life Sciences, 2018, 75, 3683-3692.	2.4	28
63	MKK6–p38 MAPK signaling pathway enhances survival but not bone-resorbing activity of osteoclasts. Biochemical and Biophysical Research Communications, 2008, 365, 252-257.	1.0	23
64	The L-type amino acid transporter LAT1 inhibits osteoclastogenesis and maintains bone homeostasis through the mTORC1 pathway. Science Signaling, 2019, 12, .	1.6	23
65	Expression and localization of MGP in rat tooth cementum. Archives of Oral Biology, 2001, 46, 585-592.	0.8	22
66	Polarized osteoclasts put marks of tartrate-resistant acid phosphatase on dentin slices â€" A simple method for identifying polarized osteoclasts. Bone, 2011, 49, 1331-1339.	1.4	19
67	Luman is involved in osteoclastogenesis through the regulation of DC-STAMP expression, stability and localization. Journal of Cell Science, 2015, 128, 4353-65.	1.2	19
68	Role of noncanonical Wnt ligands and Rorâ€family receptor tyrosine kinases in the development, regeneration, and diseases of the musculoskeletal system. Developmental Dynamics, 2021, 250, 27-38.	0.8	19
69	RANKL/OPG ratio regulates odontoclastogenesis in damaged dental pulp. Scientific Reports, 2021, 11, 4575.	1.6	19
70	Murine osteoclasts secrete serine protease HtrA1 capable of degrading osteoprotegerin in the bone microenvironment. Communications Biology, 2019, 2, 86.	2.0	18
71	The Regulation of Bone Resorption in Tooth Formation and Eruption Processes in Mouse Alveolar Crest Devoid of Cathepsin K. Journal of Pharmacological Sciences, 2003, 91, 285-294.	1.1	17
72	Sclerostin expression in trabecular bone is downregulated by osteoclasts. Scientific Reports, 2020, 10, 13751.	1.6	17

#	Article	IF	Citations
73	Olfactomedin-like protein OLFML1 inhibits Hippo signaling and mineralization in osteoblasts. Biochemical and Biophysical Research Communications, 2018, 505, 419-425.	1.0	15
74	Regulation of osteoclast function via Rho-Pkn3-c-Src pathways. Journal of Oral Biosciences, 2019, 61, 135-140.	0.8	15
75	Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways. PLoS ONE, 2014, 9, e85878.	1.1	14
76	Roles of non-canonical Wnt signaling pathways in bone resorption. Journal of Oral Biosciences, 2018, 60, 31-35.	0.8	14
77	Osteoclasts adapt to physioxia perturbation through DNA demethylation. EMBO Reports, 2021, 22, e53035.	2.0	13
78	The dynamin inhibitor dynasore inhibits bone resorption by rapidly disrupting actin rings of osteoclasts. Journal of Bone and Mineral Metabolism, 2016, 34, 395-405.	1.3	12
79	Docetaxel inhibits bone resorption through suppression of osteoclast formation and function in different manners. Journal of Bone and Mineral Metabolism, 2009, 27, 24-35.	1.3	11
80	Antigenicity of pro-osteocalcin in hard tissue: The authenticity to visualize osteocalcin-producing cells. Journal of Bone and Mineral Metabolism, 1997, 15, 122-131.	1.3	8
81	Differential MHCâ€II expression and phagocytic functions of embryoâ€derived cardiac macrophages in the course of myocardial infarction in mice. European Journal of Immunology, 2021, 51, 250-252.	1.6	7
82	Positive and Negative Regulators of Sclerostin Expression. International Journal of Molecular Sciences, 2022, 23, 4895.	1.8	7
83	Intermittent parathyroid hormone $1\hat{a}\in$ 34 induces oxidation and deterioration of mineral and collagen quality in newly formed mandibular bone. Scientific Reports, 2019, 9, 8041.	1.6	6
84	The Shisa3 knockout mouse exhibits normal bone phenotype. Journal of Bone and Mineral Metabolism, 2019, 37, 967-975.	1.3	5
85	Evidence for the major contribution of remodeling-based bone formation in sclerostin-deficient mice. Bone, 2022, 160, 116401.	1.4	5
86	Processing of NH 2 - and COOH-terminal peptides of rat osteocalcin by cathepsin B and cathepsin L. Journal of Bone and Mineral Metabolism, 1998, 16, 72-80.	1.3	4
87	Odontoblast death drives cell-rich zone-derived dental tissue regeneration. Bone, 2021, 150, 116010.	1.4	4
88	Osteoclast Generation., 2008, , 175-192.		2
89	Osteoclasts. , 2020, , 111-131.		2
90	Osteoclast Cell Lineage: Characteristics and Behavior of Osteoclast Precursors In Vivo. , 2014, , 181-192.		1

#	Article	IF	CITATIONS
91	Inhibitor of protein kinase N3 suppresses excessive bone resorption in ovariectomized mice. Journal of Bone and Mineral Metabolism, 2022, 40, 251-261.	1.3	1
92	Platypus and opossum calcitonins exhibit strong activities, even though they belong to mammals. General and Comparative Endocrinology, 2017, 246, 270-278.	0.8	0
93	Identification of cell cycle–arrested quiescent osteoclast precursors in vivo. Journal of Experimental Medicine, 2009, 206, i5-i5.	4.2	O
94	Identification of Osteoclasts in Culture. Methods in Molecular Biology, 2011, 690, 273-284.	0.4	0
95	Abstract B146: The tumor necrosis factor superfamily member RANKL suppresses effector cytokine production in group 3 innate lymphoid cells., 2019,,.		0