Marc Leibundgut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2827107/publications.pdf

Version: 2024-02-01

29 papers 3,520 citations

304368 22 h-index 454577 30 g-index

34 all docs

34 docs citations

times ranked

34

5065 citing authors

#	Article	IF	CITATIONS
1	SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nature Structural and Molecular Biology, 2020, 27, 959-966.	3.6	432
2	Crystal Structure of the Eukaryotic 40 <i>S</i> Ribosomal Subunit in Complex with Initiation Factor 1. Science, 2011, 331, 730-736.	6.0	420
3	The complete structure of the 55 <i>S</i> mammalian mitochondrial ribosome. Science, 2015, 348, 303-308.	6.0	344
4	The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature, 2014, 515, 283-286.	13.7	231
5	Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature, 2014, 505, 515-519.	13.7	207
6	Structural Basis for Substrate Delivery by Acyl Carrier Protein in the Yeast Fatty Acid Synthase. Science, 2007, 316, 288-290.	6.0	178
7	Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science, 2021, 372, 1306-1313.	6.0	165
8	The multienzyme architecture of eukaryotic fatty acid synthases. Current Opinion in Structural Biology, 2008, 18, 714-725.	2.6	163
9	Atomic structures of the eukaryotic ribosome. Trends in Biochemical Sciences, 2012, 37, 189-198.	3.7	158
10	The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO Journal, 2017, 36, 475-486.	3.5	132
11	Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Ã resolution. Nature Communications, 2015, 6, 7646.	5.8	112
12	Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science, 2018, 362, .	6.0	107
13	Structure and assembly of scalable porous protein cages. Nature Communications, 2017, 8, 14663.	5.8	102
14	Insertion of the Biogenesis Factor Rei1 Probes the Ribosomal Tunnel during 60S Maturation. Cell, 2016, 164, 91-102.	13.5	97
15	Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature, 2018, 560, 263-267.	13.7	96
16	Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nature Communications, 2016, 7, 10471.	5.8	88
17	Structure of a eukaryotic cytoplasmic preâ€40S ribosomal subunit. EMBO Journal, 2018, 37, .	3.5	85
18	Structural and Functional Insights into Human Re-initiation Complexes. Molecular Cell, 2017, 67, 447-456.e7.	4.5	68

#	Article	IF	CITATION
19	Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science, 2019, 365, 1144-1149.	6.0	61
20	Structural Insights into the Mechanism of Mitoribosomal Large Subunit Biogenesis. Molecular Cell, 2020, 79, 629-644.e4.	4.5	54
21	Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein. Science, 2021, 372, 1220-1224.	6.0	53
22	Stepwise maturation of the peptidyl transferase region of human mitoribosomes. Nature Communications, 2021, 12, 3671.	5.8	25
23	Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC. Nature Communications, 2019, 10, 4653.	5.8	23
24	Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome. Structure, 2016, 24, 2138-2151.	1.6	22
25	Interactions of the Acyl Chain with the <i>Saccharomyces cerevisiae</i> Acyl Carrier Protein. Biochemistry, 2015, 54, 2205-2213.	1.2	19
26	Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic. Scientific Reports, 2019, 9, 5634.	1.6	17
27	Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	14
28	Structure of native glycolipoprotein filaments in honeybee royal jelly. Nature Communications, 2020, 11, 6267.	5.8	13
29	Structures of prokaryotic ubiquitin-like protein Pup in complex with depupylase Dop reveal the mechanism of catalytic phosphate formation. Nature Communications, 2021, 12, 6635.	5.8	3