Liquan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/28271/publications.pdf

Version: 2024-02-01

287 papers 37,203 citations

2544 96 h-index 185 g-index

290 all docs

290 docs citations

times ranked

290

22871 citing authors

#	Article	IF	CITATIONS
1	Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy and Environmental Science, 2013, 6, 2338.	30.8	2,799
2	Research on Advanced Materials for Liâ€ion Batteries. Advanced Materials, 2009, 21, 4593-4607.	21.0	1,633
3	Nanostructured ceria-based materials: synthesis, properties, and applications. Energy and Environmental Science, 2012, 5, 8475.	30.8	984
4	New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976.	30.8	894
5	Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews, 2020, 120, 6820-6877.	47.7	891
6	Superior Electrochemical Performance and Storage Mechanism of Na ₃ V ₂ (PO ₄) ₃ Cathode for Room‶emperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 156-160.	19.5	817
7	Hard Carbon Microtubes Made from Renewable Cotton as Highâ€Performance Anode Material for Sodium″on Batteries. Advanced Energy Materials, 2016, 6, 1600659.	19.5	655
8	Building aqueous K-ion batteries for energy storage. Nature Energy, 2019, 4, 495-503.	39.5	630
9	Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370, 708-711.	12.6	616
10	Lithium storage in nitrogen-rich mesoporous carbon materials. Energy and Environmental Science, 2012, 5, 7950.	30.8	593
11	Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nature Energy, 2019, 4, 594-603.	39 . 5	572
12	Safetyâ∈Reinforced Poly(Propylene Carbonate)â∈Based Allâ∈Solidâ∈State Polymer Electrolyte for Ambientâ∈Temperature Solid Polymer Lithium Batteries. Advanced Energy Materials, 2015, 5, 1501082.	19.5	532
13	Prototype Sodium″on Batteries Using an Air‧table and Co/Niâ€Free O3‣ayered Metal Oxide Cathode. Advanced Materials, 2015, 27, 6928-6933.	21.0	504
14	Disodium Terephthalate (Na ₂ C ₈ H ₄ O ₄) as High Performance Anode Material for Lowâ€Cost Roomâ€Temperature Sodiumâ€Ion Battery. Advanced Energy Materials, 2012, 2, 962-965.	19.5	498
15	Solidâ€State Sodium Batteries. Advanced Energy Materials, 2018, 8, 1703012.	19.5	478
16	Sodium Storage and Transport Properties in Layered Na ₂ Ti ₃ O ₇ for Roomâ€Temperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 1186-1194.	19.5	456
17	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 71-77.	10.3	432
18	P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nature Communications, 2015, 6, 6954.	12.8	426

#	Article	IF	CITATIONS
19	Single Lithiumâ€lon Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie - International Edition, 2016, 55, 2521-2525.	13.8	411
20	Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chemical Society Reviews, 2018, 47, 6505-6602.	38.1	407
21	In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO ₂ Lithium Batteries. Advanced Science, 2017, 4, 1600377.	11.2	377
22	High-voltage and free-standing poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 632 Td (carbonate)/Li _{composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. Journal of Materials Chemistry A, 2017, 5, 4940-4948.}	6.75 <td>373</td>	373
23	Highâ€Entropy Layered Oxide Cathodes for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 264-269.	13.8	335
24	Atomic Structure and Kinetics of NASICON Na _x V ₂ (PO ₄) ₃ Cathode for Sodiumâ€ion Batteries. Advanced Functional Materials, 2014, 24, 4265-4272.	14.9	323
25	A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 96-104.	10.3	322
26	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 2018, 3, 1212-1218.	17.4	321
27	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	12.8	316
28	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. Nano Letters, 2016, 16, 7148-7154.	9.1	309
29	Surface and Interface Issues in Spinel LiNi _{0.5} Mn _{1.5} O ₄ : Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries. Chemistry of Materials, 2016, 28, 3578-3606.	6.7	296
30	Reviewâ€"Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-lon Batteries. Journal of the Electrochemical Society, 2015, 162, A2509-A2528.	2.9	289
31	Highly Ordered Mesoporous Crystalline MoSe ₂ Material with Efficient Visibleâ€Lightâ€Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. Advanced Functional Materials, 2013, 23, 1832-1838.	14.9	285
32	Rechargeable Li/CO2–O2 (2 : 1) battery and Li/CO2 battery. Energy and Environmental Science, 2014,	7366.387.	281
33	Strategies for improving the cyclability and thermo-stability of LiMn ₂ O ₄ -based batteries at elevated temperatures. Journal of Materials Chemistry A, 2015, 3, 4092-4123.	10.3	258
34	Atomic-scale investigation on lithium storage mechanism in TiNb2O7,. Energy and Environmental Science, 2011, 4, 2638.	30.8	256
35	First-principles study of Li ion diffusion inLiFePO4. Physical Review B, 2004, 69, .	3.2	250
36	A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13046-13052.	10.3	246

#	Article	IF	Citations
37	Progress in nitrile-based polymer electrolytes for high performance lithium batteries. Journal of Materials Chemistry A, 2016, 4, 10070-10083.	10.3	243
38	Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials, 2016, 5, 191-197.	18.0	239
39	Li-free Cathode Materials for High Energy Density Lithium Batteries. Joule, 2019, 3, 2086-2102.	24.0	239
40	Novel Design Concepts of Efficient Mgâ€lon Electrolytes toward Highâ€Performance Magnesium–Selenium and Magnesium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602055.	19.5	231
41	A Selfâ€Forming Composite Electrolyte for Solidâ€State Sodium Battery with Ultralong Cycle Life. Advanced Energy Materials, 2017, 7, 1601196.	19.5	231
42	Surface Doping to Enhance Structural Integrity and Performance of Liâ€Rich Layered Oxide. Advanced Energy Materials, 2018, 8, 1802105.	19.5	228
43	Highâ€Voltage Aqueous Naâ€Ion Battery Enabled by Inertâ€Cationâ€Assisted Waterâ€Inâ€Salt Electrolyte. Advan Materials, 2020, 32, e1904427.	ced 21.0	221
44	Atomic Structure of Li ₂ MnO ₃ after Partial Delithiation and Reâ€Lithiation. Advanced Energy Materials, 2013, 3, 1358-1367.	19.5	211
45	Advanced Nanostructured Anode Materials for Sodiumâ€lon Batteries. Small, 2017, 13, 1701835.	10.0	206
46	Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. Journal of the American Chemical Society, 2020, 142, 5742-5750.	13.7	206
47	Tuning the Closed Pore Structure of Hard Carbons with the Highest Na Storage Capacity. ACS Energy Letters, 2019, 4, 2608-2612.	17.4	205
48	Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ionics, 2002, 148, 335-342.	2.7	204
49	Enabling Stable Cycling of 4.2 V Highâ€Voltage Allâ€Solidâ€State Batteries with PEOâ€Based Solid Electrolyte. Advanced Functional Materials, 2020, 30, 1909392.	14.9	204
50	Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Scientific Reports, 2014, 4, 3935.	3.3	203
51	Mobile Ions in Composite Solids. Chemical Reviews, 2020, 120, 4169-4221.	47.7	193
52	Graphene–Co ₃ O ₄ nanocomposite as an efficient bifunctional catalyst for lithium–air batteries. Journal of Materials Chemistry A, 2014, 2, 7188-7196.	10.3	192
53	Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Letters, 2020, 5, 826-832.	17.4	192
54	Solid-state lithium batteries: Safety and prospects. EScience, 2022, 2, 138-163.	41.6	190

#	Article	IF	Citations
55	Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nature Communications, 2014, 5, 5381.	12.8	180
56	Preâ€Oxidationâ€Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance. Advanced Energy Materials, 2018, 8, 1800108.	19.5	179
57	Electrochemical Evaluation and Structural Characterization of Commercial LiCoO[sub 2] Surfaces Modified with MgO for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2002, 149, A466.	2.9	175
58	Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives. Frontiers in Chemistry, 2018, 6, 616.	3.6	175
59	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 4361-4365.	13.8	171
60	Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Science Advances, 2015, 1, e1500330.	10.3	170
61	Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials. Chemistry of Materials, 2019, 31, 6033-6065.	6.7	164
62	Correlated Migration Invokes Higher Na ⁺ â€lon Conductivity in NaSICONâ€Type Solid Electrolytes. Advanced Energy Materials, 2019, 9, 1902373.	19.5	162
63	A Novel High Capacity Positive Electrode Material with Tunnelâ€Type Structure for Aqueous Sodiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1501005.	19.5	161
64	Prescribing Functional Additives for Treating the Poor Performances of Highâ€Voltage (5 Vâ€class) LiNi _{0.5} Mn _{1.5} O ₄ /MCMB Liâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1701398.	19.5	160
65	Studies of Stannic Oxide as an Anode Material for Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1998, 145, 59-62.	2.9	156
66	Nanosized SnSb Alloy Pinning on Hard Non-Graphitic Carbon Spherules as Anode Materials for a Li Ion Battery. Chemistry of Materials, 2002, 14, 103-108.	6.7	153
67	A ceramic/polymer composite solid electrolyte for sodium batteries. Journal of Materials Chemistry A, 2016, 4, 15823-15828.	10.3	152
68	Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations. Chemistry of Materials, 2015, 27, 3456-3461.	6.7	149
69	In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nature Communications, 2020, 11, 5889.	12.8	145
70	Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries. Chemistry of Materials, 2020, 32, 3405-3413.	6.7	145
71	Electrochemical Characterization of Positive Electrode Material LiNi[sub 1/3]Co[sub 1/3]Mn[sub 1/3]O[sub 2] and Compatibility with Electrolyte for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2004, 151, A914.	2.9	143
72	In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO ₂ Cathode in a Working All-Solid-State Battery. Journal of the American Chemical Society, 2017, 139, 4274-4277.	13.7	142

#	Article	IF	CITATIONS
73	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie - International Edition, 2017, 56, 7871-7875.	13.8	141
74	Perovskite Sr0.95Ce0.05CoO3â~δloaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. Journal of Materials Chemistry, 2012, 22, 18902.	6.7	131
75	Interfacial engineering to achieve an energy density of over 200 Wh kgâ^1 in sodium batteries. Nature Energy, 2022, 7, 511-519.	39.5	130
76	New Insight into the Atomic Structure of Electrochemically Delithiated O3-Li _(1–<i>x</i>) CoO ₂ (0 ≠ <i>x</i>) ≠0.5) Nanoparticles. Nano Letters, 2012, 26192-6197.	l 2, 1	128
77	Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Scientific Reports, 2014, 4, 6272.	3.3	127
78	Progress in thermal stability of <scp>allâ€solidâ€stateâ€Liâ€ionâ€batteries</scp> . InformaÄnÃ-Materiály, 2021, 827-853.	³ 17.3	126
79	Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics, 2002, 152-153, 341-346.	2.7	125
80	Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters, 2018, 3, 2259-2266.	17.4	124
81	Ultralow-Concentration Electrolyte for Na-lon Batteries. ACS Energy Letters, 2020, 5, 1156-1158.	17.4	120
82	Epitaxial Induced Plating Currentâ€Collector Lasting Lifespan of Anodeâ€Free Lithium Metal Battery. Advanced Energy Materials, 2021, 11, 2003709.	19.5	119
83	High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Scientific Reports, 2015, 5, 14227.	3.3	117
84	Practical evaluation of energy densities for sulfide solid-state batteries. ETransportation, 2019, 1, 100010.	14.8	114
85	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>M</mml:mi> -doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CeO</mml:mtext></mml:mrow><mml:mn></mml:mn></mml:msub></mml:mrow></mml:math 	3.2 2 <th>112 in></th>	112 in>
86	Iron migration and oxygen oxidation during sodium extraction from NaFeO2. Nano Energy, 2018, 47, 519-526.	16.0	111
87	Superior Allâ€5olidâ€5tate Batteries Enabled by a Gasâ€Phaseâ€5ynthesized Sulfide Electrolyte with Ultrahigh Moisture Stability and Ionic Conductivity. Advanced Materials, 2021, 33, e2100921.	21.0	110
88	Nonâ€Corrosive, Nonâ€Absorbing Organic Redox Couple for Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2010, 20, 3358-3365.	14.9	109
89	Electrochemical and In Situ Synchrotron XRD Studies on Al[sub 2]O[sub 3]-Coated LiCoO[sub 2] Cathode Material. Journal of the Electrochemical Society, 2004, 151, A1344.	2.9	108
90	Rigid–Flexible Coupling High Ionic Conductivity Polymer Electrolyte for an Enhanced Performance of LiMn ₂ O ₄ /Graphite Battery at Elevated Temperature. ACS Applied Materials & Limited Representation	8.0	108

#	Article	IF	Citations
91	Flexible Na batteries. InformaÄnÃ-Materiály, 2020, 2, 126-138.	17.3	108
92	Feasibility of Using Li ₂ MoO ₃ in Constructing Li-Rich High Energy Density Cathode Materials. Chemistry of Materials, 2014, 26, 3256-3262.	6.7	106
93	Uncovering the Potential of M1â€Siteâ€Activated NASICON Cathodes for Znâ€Ion Batteries. Advanced Materials, 2020, 32, e1907526.	21.0	103
94	Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Scientific Reports, 2015, 5, 8335.	3.3	102
95	Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3. Journal of Materials Chemistry A, 2014, 2, 4811.	10.3	101
96	Lithium Plating and Stripping on Carbon Nanotube Sponge. Nano Letters, 2019, 19, 494-499.	9.1	101
97	Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries. Journal of Materials Chemistry, 2001, 11, 1502-1505.	6.7	98
98	Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. Journal of Materials Chemistry A, 2015, 3, 7849-7854.	10.3	97
99	A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Materials, 2019, 23, 514-521.	18.0	97
100	A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. Journal of Materials Chemistry, 2011, 21, 11916.	6.7	96
101	Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries. ACS Applied Materials & Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries.	8.0	95
102	Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. Nano Letters, 2021, 21, 3310-3317.	9.1	95
103	Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) ₆ Cathode for Aqueous Al-lon Battery. ACS Applied Materials & Discrete Samp; Interfaces, 2019, 11, 41356-41362.	8.0	93
104	In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Letters, 2019, 4, 1650-1657.	17.4	93
105	An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dualâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1804022.	19.5	92
106	Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes. RSC Advances, 2016, 6, 32454-32461.	3.6	90
107	A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation. NPG Asia Materials, 2015, 7, e153-e153.	7.9	88
108	Novel Li[(CF ₃ SO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29705-29712.	8.0	87

#	Article	IF	CITATIONS
109	An O3â€type Oxide with Low Sodium Content as the Phaseâ€Transitionâ€Free Anode for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 7056-7060.	13.8	87
110	Self-Stabilized Solid Electrolyte Interface on a Host-Free Li-Metal Anode toward High Areal Capacity and Rate Utilization. Chemistry of Materials, 2018, 30, 4039-4047.	6.7	87
111	Insights into Lithium and Sodium Storage in Porous Carbon. Nano Letters, 2020, 20, 3836-3843.	9.1	86
112	New Binary Room-Temperature Molten Salt Electrolyte Based on Urea and LiTFSI. Journal of Physical Chemistry B, 2001, 105, 9966-9969.	2.6	85
113	Obtaining ultra-long copper nanowires via a hydrothermal process. Science and Technology of Advanced Materials, 2005, 6, 761-765.	6.1	85
114	Novel Methods for Sodiumâ€lon Battery Materials. Small Methods, 2017, 1, 1600063.	8.6	84
115	Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. Physica Status Solidi (B): Basic Research, 2006, 243, 1835-1841.	1.5	83
116	Performance Improvement of Surface-Modified LiCoO[sub 2] Cathode Materials: An Infrared Absorption and X-Ray Photoelectron Spectroscopic Investigation. Journal of the Electrochemical Society, 2003, 150, A199.	2.9	82
117	High Polymerization Conversion and Stable High-Voltage Chemistry Underpinning an In Situ Formed Solid Electrolyte. Chemistry of Materials, 2020, 32, 9167-9175.	6.7	81
118	Reversible reduction of Li ₂ CO ₃ . Journal of Materials Chemistry A, 2015, 3, 14173-14177.	10.3	80
119	Trimethyl Borate as Film-Forming Electrolyte Additive To Improve High-Voltage Performances. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17435-17443.	8.0	77
120	Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodiumâ€lon Batteries. ChemElectroChem, 2016, 3, 1741-1745.	3.4	76
121	A high-voltage poly(methylethyl \hat{l}_{\pm} -cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. Journal of Materials Chemistry A, 2016, 4, 5191-5197.	10.3	76
122	A new Na[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-based polymer electrolyte for solid-state sodium batteries. Journal of Materials Chemistry A, 2017, 5, 7738-7743.	10.3	76
123	Li–Ti Cation Mixing Enhanced Structural and Performance Stability of Liâ€Rich Layered Oxide. Advanced Energy Materials, 2019, 9, 1901530.	19.5	76
124	A spray drying approach for the synthesis of a Na ₂ C ₆ H ₂ /CNT nanocomposite anode for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 13193-13197.	10.3	75
125	Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. Journal of Materials Chemistry A, 2022, 10, 4517-4532.	10.3	7 5
126	lodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo ₆ S ₈ Nanosheets for Advanced Multivalent Batteries. ACS Nano, 2020, 14, 1102-1110.	14.6	72

#	Article	IF	CITATIONS
127	Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters, 2020, 5, 1986-1995.	17.4	72
128	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie - International Edition, 2021, 60, 17547-17555.	13.8	72
129	Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32631-32636.	8.0	71
130	A class of liquid anode for rechargeable batteries with ultralong cycle life. Nature Communications, 2017, 8, 14629.	12.8	71
131	Liâ€Rich Li ₂ [Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296.	13.8	71
132	Spectroscopic studies on interactions and microstructures in propylene carbonate?LiTFSI electrolytes. Journal of Raman Spectroscopy, 2001, 32, 900-905.	2.5	70
133	Controlled deposition of Li metal. Nano Energy, 2017, 32, 241-246.	16.0	70
134	Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness. Advanced Energy Materials, 2019, 9, 1803087.	19.5	70
135	Interface Concentratedâ€Confinement Suppressing Cathode Dissolution in Waterâ€inâ€Salt Electrolyte. Advanced Energy Materials, 2020, 10, 2000665.	19.5	70
136	Improved Cycling Stability of Lithiumâ€Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, 3, 531-536.	3.4	67
137	Ni-based cathode materials for Na-ion batteries. Nano Research, 2019, 12, 2018-2030.	10.4	67
138	Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li ₃ PS ₄ electrolyte. Physical Chemistry Chemical Physics, 2016, 18, 21269-21277.	2.8	66
139	Longâ€Life Lithiumâ€Metal Allâ€Solidâ€State Batteries and Stable Li Plating Enabled by InÂSitu Formation of Li ₃ PS ₄ in the SEI Layer. Advanced Materials, 2022, 34, .	21.0	66
140	Phase Diagram Determined Lithium Plating/Stripping Behaviors on Lithiophilic Substrates. ACS Energy Letters, 2021, 6, 4118-4126.	17.4	65
141	Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature. Journal of Materials Chemistry, 2000, 10, 693-696.	6.7	64
142	Origin of Solid Electrolyte Interphase on Nanosized LiCoO[sub 2]. Electrochemical and Solid-State Letters, 2006, 9, A328.	2.2	63
143	Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic) Tj ETQq1 High-Voltage Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41462-41472.	1 0.78431 8.0	4 rgBT /Ove 63
144	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, .	10.3	63

#	Article	IF	Citations
145	Polypyrrole-iron-oxygen coordination complex as high performance lithium storage material. Energy and Environmental Science, 2011, 4, 3442.	30.8	62
146	High energy density hybrid Mg ²⁺ /Li ⁺ battery with superior ultra-low temperature performance. Journal of Materials Chemistry A, 2016, 4, 2277-2285.	10.3	62
147	Novel Concentrated Li[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4282-4289.	8.0	62
148	Waterâ€Stable Sulfide Solid Electrolyte Membranes Directly Applicable in Allâ€Solidâ€State Batteries Enabled by Superhydrophobic Li ⁺ â€Conducting Protection Layer. Advanced Energy Materials, 2022, 12, .	19.5	62
149	Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nature Communications, 2018, 9, 3341.	12.8	60
150	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie, 2017, 129, 7979-7983.	2.0	59
151	Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles. Physical Review Letters, 2017, 118, 195901.	7.8	58
152	In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries. Small, 2017, 13, 1601530.	10.0	58
153	The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 7770-7776.	13.8	58
154	Ion Association and Salvation Studies of LiClO4/Ethylene Carbonate Electrolyte by Raman and Infrared Spectroscopy. Journal of the Electrochemical Society, 1998, 145, 3346-3350.	2.9	57
155	First-principles investigation of the structural, magnetic, and electronic properties of olivineLiFePO4. Physical Review B, 2005, 71, .	3.2	57
156	Realizing long-term cycling stability and superior rate performance of 4.5ÂV–LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. Journal of Power Sources, 2020, 470, 228423.	7.8	57
157	Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Material Advances, 2021, 2021, .	11.0	57
158	Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021, 13, 1061-1069.	13.6	57
159	Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 20795-20803.	10.3	54
160	5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries. Nano Energy, 2021, 90, 106589.	16.0	53
161	Insight into Enhanced Cycling Performance of Li–O2 Batteries Based on Binary CoSe2/CoO Nanocomposite Electrodes. Journal of Physical Chemistry Letters, 2014, 5, 615-621.	4.6	52
162	First-principles studies of cation-doped spinelLiMn2O4for lithium ion batteries. Physical Review B, 2003, 67, .	3.2	51

#	Article	IF	Citations
163	Single ion solid-state composite electrolytes with high electrochemical stability based on a poly(perfluoroalkylsulfonyl)-imide ionene polymer. Journal of Materials Chemistry A, 2014, 2, 15952-15957.	10.3	49
164	Remarkably Improved Electrode Performance of Bulk MnS by Forming a Solid Solution with FeS – Understanding the Li Storage Mechanism. Advanced Functional Materials, 2014, 24, 5557-5566.	14.9	49
165	Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery. Scientific Reports, 2014, 4, 7231.	3.3	48
166	Revealing an Interconnected Interfacial Layer in Solidâ€State Polymer Sodium Batteries. Angewandte Chemie - International Edition, 2019, 58, 17026-17032.	13.8	48
167	Uncovering LiH Triggered Thermal Runaway Mechanism of a Highâ€Energy LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /Graphite Pouch Cell. Advanced Science, 2021, 8, e2100676.	11.2	48
168	Antisite defects and Mg doping in LiFePO4: aÂfirst-principles investigation. Applied Physics A: Materials Science and Processing, 2011, 104, 529-537.	2.3	47
169	Sodiumâ€Deficient O3â€Na _{0.9} [Ni _{0.4} Mn <i>_x</i> Ti _{0.6â^'<i>x</i>}]O ₂ Layeredâ€Oxide Cathode Materials for Sodiumâ€Ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 538-544.	2.3	47
170	Anionic Effect on Enhancing the Stability of a Solid Electrolyte Interphase Film for Lithium Deposition on Graphite. Nano Letters, 2021, 21, 5316-5323.	9.1	46
171	A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2110323.	21.0	46
172	Enhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel cells. Journal of Materials Chemistry A, 2016, 4, 18031-18036.	10.3	45
173	Eliminating Transition Metal Migration and Anionic Redox to Understand Voltage Hysteresis of Lithiumâ€Rich Layered Oxides. Advanced Energy Materials, 2020, 10, 1903634.	19.5	45
174	Dispersion effects of Raman lines in carbons. Journal of Applied Physics, 1998, 84, 227-231.	2.5	44
175	Capacitive Energy Storage on Fe/Li ₃ PO ₄ Grain Boundaries. Journal of Physical Chemistry C, 2011, 115, 3803-3808.	3.1	44
176	Disordered carbon anodes for Na-ion batteriesâ€"quo vadis?. Science China Chemistry, 2021, 64, 1679-1692.	8.2	44
177	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224.	23.7	44
178	Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density. National Science Review, 2020, 7, 1768-1775.	9.5	43
179	A stabilized PEO-based solid electrolyte <i>via</i> a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chemical Communications, 2020, 56, 5633-5636.	4.1	43
180	Improving the Performances of LiCoO[sub 2] Cathode Materials by Soaking Nano-Alumina in Commercial Electrolyte. Journal of the Electrochemical Society, 2007, 154, A55.	2.9	42

#	Article	IF	Citations
181	New concept of surface modification to LiCoO2. Journal of Power Sources, 2007, 174, 328-334.	7.8	42
182	Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in an Operating Battery. Nano Letters, 2017, 17, 7782-7788.	9.1	42
183	Controllable Synthesis of Shuttleâ€Shaped Ceria and Its Catalytic Properties for CO Oxidation. European Journal of Inorganic Chemistry, 2009, 2009, 3883-3887.	2.0	41
184	Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations. Journal of Materials Chemistry A, 2014, 2, 9020.	10.3	41
185	The low-temperature (400 \hat{A}° C) coating of few-layer graphene on porous Li4Ti5O12via C28H16Br2 pyrolysis for lithium-ion batteries. RSC Advances, 2012, 2, 1751.	3.6	40
186	Polypyrrole–NiO composite as high-performance lithium storage material. Electrochimica Acta, 2013, 105, 162-169.	5.2	40
187	High Current Density and Long Cycle Life Enabled by Sulfide Solid Electrolyte and Dendriteâ€Free Liquid Lithium Anode. Advanced Functional Materials, 2022, 32, 2105776.	14.9	40
188	Lowâ€Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries' Lifetime. Advanced Materials, 2021, 33, e2102034.	21.0	39
189	Interfacial and cycle stability of sulfide all-solid-state batteries with Ni-rich layered oxide cathodes. Nano Energy, 2022, 100, 107528.	16.0	38
190	Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites. Science Advances, 2022, 8, eabj7698.	10.3	37
191	Characterizations of crystalline structure and electrical properties of pyrolyzed polyfurfuryl alcohol. Journal of Applied Physics, 1997, 82, 5705-5710.	2.5	36
192	Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1526-1536.	5.1	36
193	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€Ion Batteries. Angewandte Chemie, 2019, 131, 4405-4409.	2.0	36
194	Na10SnSb2S12: A nanosized air-stable solid electrolyte for all-solid-state sodium batteries. Chemical Engineering Journal, 2021, 420, 127692.	12.7	36
195	Additiveâ€Free Selfâ€Presodiation Strategy for Highâ€Performance Naâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2101475.	14.9	36
196	Carbon-coated hierarchically porous silicon as anode material for lithium ion batteries. RSC Advances, 2014, 4, 15314.	3.6	35
197	Novel 1.5 V anode materials, ATiOPO4(A = NH4, K, Na), for room-temperature sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7141-7147.	10.3	35
198	Improving thermal stability of sulfide solid electrolytes: An intrinsic theoretical paradigm. Informa \ddot{A} n \ddot{A} -Materi \ddot{A}_i ly, 2022, 4, .	17.3	33

#	Article	IF	Citations
199	Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li ₂ O ₂ for Liâ€O ₂ Batteries. Advanced Energy Materials, 2015, 5, 1400664.	19.5	32
200	Mesoscale Organization of Flower-Like La2O2CO3and La2O3Microspheres. Journal of the American Ceramic Society, 2007, 90, 2576-2581.	3.8	31
201	Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing. Advanced Energy Materials, 2018, 8, 1703092.	19.5	30
202	Raising the Intrinsic Safety of Layered Oxide Cathodes by Surface Re‣ithiation with LLZTO Garnetâ€Type Solid Electrolytes. Advanced Materials, 2022, 34, e2200655.	21.0	30
203	Ab initiostudies on the stability and electronic structure ofLiCoO2(003) surfaces. Physical Review B, 2005, 71, .	3.2	29
204	Li ₂ C ₂ , a Highâ€Capacity Cathode Material for Lithium Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 644-648.	13.8	29
205	LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Research, 2016, 9, 3903-3913.	10.4	29
206	Vacancy-induced MnO ₆ distortion and its impacts on structural transition of Li ₂ MnO ₃ . Physical Chemistry Chemical Physics, 2017, 19, 7025-7031.	2.8	29
207	A Well-Defined Silicon Nanocone–Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 2806-2814.	8.0	29
208	Leakageâ€Proof Electrolyte Chemistry for a Highâ€Performance Lithium–Sulfur Battery. Angewandte Chemie - International Edition, 2021, 60, 16487-16491.	13.8	29
209	Constructing Naâ€lon Cathodes via Alkaliâ€Site Substitution. Advanced Functional Materials, 2020, 30, 1910840.	14.9	28
210	Configurationâ€dependent anionic redox in cathode materials. , 2022, 1, .		28
211	Coating Material-Induced Acidic Electrolyte Improves LiCoO[sub 2] Performances. Electrochemical and Solid-State Letters, 2006, 9, A552.	2.2	27
212	TG-MS analysis on thermal decomposable components in the SEI film on Cr2O3 powder anode in Li-ion batteries. Ionics, 2009, 15, 91-96.	2.4	27
213	Single Lithiumâ€lon Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie, 2016, 128, 2567-2571.	2.0	26
214	Dense Allâ€Electrochemâ€Active Electrodes for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2021, 33, e2008723.	21.0	26
215	Surface-Enhanced Raman Scattering Study on Passivating Films of Ag Electrodes in Lithium Batteries. Journal of Physical Chemistry B, 2000, 104, 8477-8480.	2.6	25
216	Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2278-2292.	5.1	25

#	Article	IF	Citations
217	Perovskite La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O ₃ Nanofibers Decorated with RuO ₂ Nanoparticles as an Efficient Bifunctional Cathode for Rechargeable Li–O ₂ Batteries. ChemNanoMat, 2017, 3, 485-490.	2.8	25
218	Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 2020, 20, 6852-6858.	9.1	25
219	Tribological properties of fullerenes C ₆₀ and C ₇₀ microparticles. Journal of Materials Research, 1996, 11, 2749-2756.	2.6	24
220	A novel assembly of LiFePO4 microspheres from nanoplates. CrystEngComm, 2012, 14, 4344.	2.6	24
221	Insight into the Structure and Functional Application of the Sr0.95Ce0.05CoO3â^î^î Cathode for Solid Oxide Fuel Cells. Inorganic Chemistry, 2015, 54, 3477-3484.	4.0	24
222	An α-CrPO ₄ -type NaV ₃ (PO ₄) ₃ anode for sodium-ion batteries with excellent cycling stability and the exploration of sodium storage behavior. Journal of Materials Chemistry A, 2017, 5, 3839-3847.	10.3	24
223	Dynamic Octahedral Breathing in Oxygen-Deficient Ba _{0.9} Co _{0.7} Fe _{0.2} Nb _{0.1} O _{3-Î} Perovskite Performing as a Cathode in Intermediate-Temperature SOFC. Inorganic Chemistry, 2016, 55, 3091-3097.	4.0	23
224	High-throughput computational discovery of K ₂ CdO ₂ as an ion conductor for solid-state potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 5157-5162.	10.3	23
225	Stacking Faults Hinder Lithium Insertion in Li ₂ RuO ₃ . Advanced Energy Materials, 2020, 10, 2002631.	19.5	22
226	Performance improvement of LiCoO2 by molten salt surface modification. Journal of Power Sources, 2007, 167, 504-509.	7.8	21
227	Workfunction, a new viewpoint to understand the electrolyte/electrode interface reaction. Journal of Materials Chemistry A, 2015, 3, 23420-23425.	10.3	21
228	The Role of Electron Localization in Covalency and Electrochemical Properties of Lithiumâ€lon Battery Cathode Materials. Advanced Functional Materials, 2021, 31, 2001633.	14.9	21
229	Synergy Effect of Trimethyl Borate on Protecting High-Voltage Cathode Materials in Dual-Additive Electrolytes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21459-21466.	8.0	21
230	Spinel-related Li2Ni0.5Mn1.5O4 cathode for 5-V anode-free lithium metal batteries. Energy Storage Materials, 2022, 45, 821-827.	18.0	21
231	Feasibility to Improve the Stability of Lithium-Rich Layered Oxides by Surface Doping. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18353-18359.	8.0	21
232	Localizedâ€domains staging structure and evolution in lithiated graphite. , 2023, 5, .		21
233	Understanding mechanism of improved electrochemical performance of surface modified LiCoO2. Solid State Ionics, 2004, 175, 239-242.	2.7	20
234	Lithium deintercalation behavior in Li-rich vanadium phosphate as a potential cathode for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 14760.	6.7	20

#	Article	IF	CITATIONS
235	Structural stability and stabilization of Li ₂ MoO ₃ . Physical Chemistry Chemical Physics, 2017, 19, 17538-17543.	2.8	20
236	Wearable Bipolar Rechargeable Aluminum Battery. , 2020, 2, 808-813.		19
237	Anomalous Thermal Decomposition Behavior of Polycrystalline LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ in PEOâ€Based Solid Polymer Electrolyte. Advanced Functional Materials, 2022, 32, .	14.9	19
238	The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 7849-7855.	2.0	18
239	Large Scale One-Pot Synthesis of Monodispersed Na ₃ (VOPO ₄) ₂ F Cathode for Na-Ion Batteries. Energy Material Advances, 2022, 2022, .	11.0	16
240	A new route to single crystalline vanadium dioxide nanoflakes via thermal reduction. Journal of Materials Research, 2007, 22, 1921-1926.	2.6	15
241	Highâ€Entropy Layered Oxide Cathodes for Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 270-275.	2.0	15
242	Anti-P2 structured Na0.5NbO2and its negative strain effect. Energy and Environmental Science, 2015, 8, 2753-2759.	30.8	14
243	An O3â€type Oxide with Low Sodium Content as the Phaseâ€Transitionâ€Free Anode for Sodiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 7174-7178.	2.0	14
244	Amorphous Redox-Rich Polysulfides for Mg Cathodes. Jacs Au, 2021, 1, 1266-1274.	7.9	14
245	Reaction Mechanisms of Ta-Substituted Cubic Li ₇ La ₃ Zr ₂ O ₁₂ with Solvents During Storage. ACS Applied Materials & During Storage.	8.0	14
246	lodine ion transport in solid electrolyte Lil(C3H5NO)2: a first-principles identification. Ionics, 2007, 12, 343-347.	2.4	13
247	Cereusâ€Shaped Mesoporous Rutile TiO ₂ Formed in Ionic Liquid: Synthesis and Liâ€Storage Properties. ChemElectroChem, 2014, 1, 549-553.	3.4	13
248	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie, 2021, 133, 17688-17696.	2.0	13
249	Simplifying and accelerating kinetics enabling fast-charge Al batteries. Journal of Materials Chemistry A, 2020, 8, 23834-23843.	10.3	12
250	Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells. Engineering, 2022, 8, 170-180.	6.7	12
251	Electronic Conductive Inorganic Cathodes Promising Highâ€Energy Organic Batteries. Advanced Materials, 2021, 33, e2005781.	21.0	12
252	Electrolyte and current collector designs for stable lithium metal anodes. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 953-964.	4.9	12

#	Article	IF	CITATIONS
253	Europium-Doped Ceria Nanowires as Anode for Solid Oxide Fuel Cells. Frontiers in Chemistry, 2020, 8, 348.	3.6	11
254	New insights into the mechanism of cation migration induced by cation–anion dynamic coupling in superionic conductors. Journal of Materials Chemistry A, 2022, 10, 3093-3101.	10.3	11
255	Batteries: Prescribing Functional Additives for Treating the Poor Performances of Highâ€Voltage (5) Tj ETQq1 1	0.784314 19.5	rgBT /Overloo 10
256	Reduction Depth Dependent Structural Reversibility of Sn ₃ (PO ₄) ₂ . ACS Applied Energy Materials, 2018, 1, 129-133.	5.1	8
257	Interfacial chemistry of \hat{l}^3 -glutamic acid derived block polymer binder directing the interfacial compatibility of high voltage LiNi0.5Mn1.5O4 electrode. Science China Chemistry, 2021, 64, 92-100.	8.2	8
258	Activation of LiMnBO glass as cathode material for lithium-ion batteries. Journal of Materials Chemistry, 2000, 10, 1465-1467.	6.7	7
259	Lithium Storage in Heatâ€Treated SnF ₂ /Polyacrylonitrile Anode. Chemistry - A European Journal, 2015, 21, 8491-8496.	3.3	7
260	Revealing an Interconnected Interfacial Layer in Solidâ€State Polymer Sodium Batteries. Angewandte Chemie, 2019, 131, 17182-17188.	2.0	7
261	All-in-One Ionic–Electronic Dual-Carrier Conducting Framework Thickening All-Solid-State Electrode. ACS Energy Letters, 2022, 7, 766-772.	17.4	7
262	Experimental Evidence of the Interaction Between Polyacrylonitrile and Ethylene Carbonate Plasticizer by Raman Spectroscopy. Journal of Raman Spectroscopy, 1996, 27, 609-613.	2.5	5
263	Raman Spectroscopic Investigation of the Dissociation of Dimethylsulphoxide Induced by Polyacrylonitrile. Journal of Raman Spectroscopy, 1996, 27, 901-906.	2.5	5
264	Crystallization mechanism in amorphous material of 0.5LiMnO2-0.5B2O3. Journal of Materials Science, 2000, 35, 1695-1698.	3.7	5
265	Alkaliâ€lon Storage Behaviour in Spinel Lithium Titanate Electrodes. ChemElectroChem, 2015, 2, 1678-1681.	3.4	5
266	Design and Properties Prediction of <i>AM</i> CO ₃ F by First-Principles Calculations. ACS Applied Materials & Design and Properties Prediction of <i>AM</i> CO ₃ F by First-Principles Calculations. ACS Applied Materials & Design and Properties Prediction of <i>AMFirst-Principles Calculations. ACS Applied Materials & Design and Properties Prediction of <i>AMFirst-Principles Calculations. ACS Applied Materials & Design and Properties Prediction of <i>AMFirst-Principles Calculations. ACS Applied Materials & Design and Properties Prediction of <i>AMFirst-Principles Calculations. ACS Applied Materials & Design and Properties Principles Calculations. ACS Applied Materials & Design and Properties Principles Calculations. ACS Applied Materials & Design and Properties Principles Calculations. ACS Applied Materials & Design and Properties Principles Principles</i></i></i></i>	8.0	5
267	Anomalous lithium storage in a novel nanonet composed by SnO2 nanoparticles and poly(ethylene) Tj ETQq $1\ 1$	0.78 <u>4</u> 314	rgĄT /Overl
268	Sodium-Ion Batteries: Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3Cathode for Room-Temperature Sodium-Ion Batteries (Adv. Energy Mater. 2/2013). Advanced Energy Materials, 2013, 3, 138-138.	19.5	4
269	SOME FACTORS EFFECT ON ZERO-RESISTANCE TEMPERATURE OF SUPERCONDUCTR Y1Ba2Cu3O9â^'x. International Journal of Modern Physics B, 1987, 01, 267-272.	2.0	2
270	Recent Advances in Fast Ion Conducting Materials and Devices. , 1990, , .		2

#	Article	IF	CITATIONS
271	SPECTROSCOPIC STUDIES OF SOLID-ELECTROLYTE INTERPHASE ON POSITIVE AND NEGATIVE ELECTRODES FOR LITHIUM ION BATTERIES. , 2004, , 140-197.		2
272	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	2.0	2
273	Ionic Conductivity of LiSiON and the Effect of Amorphization/Heterovalent Doping on Li+ Diffusion. Inorganics, 2022, 10, 45.	2.7	2
274	SUPERCONDUCTORS WITH HIGH ZERO-RESISTANCE TEMPERATURE IN Ln-Ba-Cu-O SYSTEM (Ln=Gd, Dy, Ho,) Tj E	TQq0 0 0	rgBT /Overloo
275	MAGNETIZATION OF HIGH Tc SUPERCONDUCTING Ba-Y-Cu-O. International Journal of Modern Physics B, 1987, 01, 509-512.	2.0	1
276	ELECTRON TUNNELING MEASUREMENTS OF ENERGY GAP IN SUPERCONDUCTORS YBaCuO, LaSrCuO AND BPBO. International Journal of Modern Physics B, 1987, 01, 555-559.	2.0	1
277	THE MICRO-REGION COMPOSITIONAL VARIATION OF Y1Ba2Cu3O9â^'x SINGLE PHASE SUPERCONDUCTOR. International Journal of Modern Physics B, 1987, 01, 231-236.	2.0	1
278	Nanosized alloy-based anode materials for Li ion batteries. , 2000, , .		1
279	Polymer-in-salt electrolytes based on PAN-LiTFSI. , 2000, , .		0
280	Preparation of superionic conductor AgI nano-wires in alumina template by Electrochemical dual liquor deposition (EDLD). , 2000, , .		0
281	Anomalous Conductivity of Glassy Li ₂ font>O:4 MnO _{2-x} :4 B ₂ During Heat Treatment., 2000, , .	ub> <font:< td=""><td>>Œ/font>∢su</td></font:<>	>Œ/font>∢su
282	Raman Spectral Studies on Solid State Interphase in Li Batteries. , 2000, , .		0
283	Atomic Scale Recognition of Structure in the Intercalation of Sodium by Aberration-Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 2120-2121.	0.4	0
284	Leakageâ€Proof Electrolyte Chemistry for a Highâ€Performance Lithium–Sulfur Battery. Angewandte Chemie, 2021, 133, 16623-16627.	2.0	0
285	Electronic conductivity of La0.9Sr0.1InO3-δ., 2000, , .		0
286	Electrochemical performance of Ni -deposited graphite anodes for lithium secondary batteries. , 2000, , .		0
287	Sol-Gel Synthesis and Properties of Sr -Doped LalnO ₃ Perovskite Oxide., 2000,,.		0